summaryrefslogtreecommitdiff
path: root/doc
diff options
context:
space:
mode:
Diffstat (limited to 'doc')
-rw-r--r--doc/analysis-nfp.md2
-rw-r--r--doc/model-visual.md2
-rw-r--r--doc/modeling-method.md8
3 files changed, 6 insertions, 6 deletions
diff --git a/doc/analysis-nfp.md b/doc/analysis-nfp.md
index cec5ad0..877ac2a 100644
--- a/doc/analysis-nfp.md
+++ b/doc/analysis-nfp.md
@@ -8,7 +8,7 @@ Classification and Regression Trees (CART) are capable of generating accurate mo
Hence, after loading a CART model into kconfig-webconf, only a small subset of busybox features will be annotated with NFP deltas.
```
-DFATOOL_DTREE_SKLEARN_CART=1 DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1 DFATOOL_KCONF_WITH_CHOICE_NODES=0 .../dfatool/bin/analyze-kconfig.py --export-webconf busybox.json --force-tree ../busybox-1.35.0/Kconfig .
+DFATOOL_DTREE_SKLEARN_CART=1 DFATOOL_PARAM_CATEGORICAL_TO_SCALAR=1 DFATOOL_KCONF_WITH_CHOICE_NODES=0 .../dfatool/bin/analyze-kconfig.py --export-webconf busybox.json --force-tree ../busybox-1.35.0/Kconfig .
```
Refer to the [kconfig-webconf README](https://ess.cs.uos.de/git/software/kconfig-webconf/-/blob/master/README.md#user-content-performance-aware-configuration) for details on using the generated model.
diff --git a/doc/model-visual.md b/doc/model-visual.md
index 2fdbd29..2bc38b4 100644
--- a/doc/model-visual.md
+++ b/doc/model-visual.md
@@ -48,7 +48,7 @@ The model for `param[paramIndex] <= threshold` is located in `left`, the model
for `param[paramIndex] > threshold` is located in `right`. `value` is a
static model that serves as fall-back if `param[paramIndex]` is undefined.
-### RMT categorial split node
+### RMT categorical split node
```
{
diff --git a/doc/modeling-method.md b/doc/modeling-method.md
index 27cb334..e4865d9 100644
--- a/doc/modeling-method.md
+++ b/doc/modeling-method.md
@@ -6,7 +6,7 @@ Enable these with `DFATOOL_DTREE_SKLEARN_CART=1` and `--force-tree`.
### Related Options
-* `DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1` converts categorial parameters (which are not supported by CART) to numeric ones.
+* `DFATOOL_PARAM_CATEGORICAL_TO_SCALAR=1` converts categorical parameters (which are not supported by CART) to numeric ones.
## XGB (Gradient-Boosted Forests / eXtreme Gradient boosting)
@@ -15,7 +15,7 @@ You should also specify `DFATOOL_XGB_N_ESTIMATORS`, `DFATOOL_XGB_MAX_DEPTH`, and
### Related Options
-* `DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1` converts categorial parameters (which are not supported by XGB) to numeric ones.
+* `DFATOOL_PARAM_CATEGORICAL_TO_SCALAR=1` converts categorical parameters (which are not supported by XGB) to numeric ones.
* Anything prefixed with `DFATOOL_XGB_`.
## LMT (Linear Model Trees)
@@ -27,7 +27,7 @@ They always use a maximum depth of 20.
See the [LinearTreeRegressor documentation](lib/lineartree/lineartree.py) for details on training hyper-parameters.
-* `DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1` converts categorial parameters (which are not supported by LMT) to numeric ones.
+* `DFATOOL_PARAM_CATEGORICAL_TO_SCALAR=1` converts categorical parameters (which are not supported by LMT) to numeric ones.
* `DFATOOL_LMT_MAX_DEPTH`
* `DFATOOL_LMT_MIN_SAMPLES_SPLIT`
* `DFATOOL_LMT_MIN_SAMPLES_LEAF`
@@ -47,7 +47,7 @@ All of these are valid regression model trees.
* `DFATOOL_DTREE_IGNORE_IRRELEVANT_PARAMS=0` disables the relevant parameter detection heuristic when building the tree structure. By default, irrelevant parameters cannot end up as decision nodes.
* `DFATOOL_FIT_LINEAR_ONLY=1` makes RMT behave more like LMT by only considering linear functions in leaf nodes.
* `DFATOOL_FIT_FOL=1`
-* `DFATOOL_PARAM_CATEGORIAL_TO_SCALAR=1`
+* `DFATOOL_PARAM_CATEGORICAL_TO_SCALAR=1`
* `DFATOOL_ULS_SKIP_CODEPENDENT_CHECK=1`
* `DFATOOL_REGRESSION_SAFE_FUNCTIONS=1`