summaryrefslogtreecommitdiff
path: root/lib/automata.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/automata.py')
-rwxr-xr-xlib/automata.py31
1 files changed, 27 insertions, 4 deletions
diff --git a/lib/automata.py b/lib/automata.py
index eb52081..8e889aa 100755
--- a/lib/automata.py
+++ b/lib/automata.py
@@ -14,9 +14,13 @@ def _dict_to_list(input_dict: dict) -> list:
class SimulationResult:
- def __init__(self, duration: float, energy: float, end_state, parameters):
+ def __init__(self, duration: float, energy: float, end_state, parameters, duration_mae: float = None, energy_mae: float = None):
self.duration = duration * 1e-6
+ self.duration_mae = duration_mae * 1e-6
+ self.duration_mape = self.duration_mae * 100 / self.duration
self.energy = energy * 1e-12
+ self.energy_mae = energy_mae * 1e-12
+ self.energy_mape = self.energy_mae * 100 / self.energy
self.end_state = end_state
self.parameters = parameters
self.mean_power = self.energy / self.duration
@@ -40,6 +44,12 @@ class PTAAttribute:
return self.function.eval(param_list, args)
return self.value
+ def eval_mae(self, param_dict=dict(), args=list()):
+ param_list = _dict_to_list(param_dict)
+ if self.function and self.function.is_predictable(param_list):
+ return self.function_error['mae']
+ return self.value_error['mae']
+
def to_json(self):
ret = {
'static': self.value,
@@ -58,8 +68,12 @@ class PTAAttribute:
ret = cls()
if 'static' in json_input:
ret.value = json_input['static']
+ if 'static_error' in json_input:
+ ret.value_error = json_input['static_error']
if 'function' in json_input:
ret.function = AnalyticFunction(json_input['function']['raw'], parameters, 0, regression_args=json_input['function']['regression_args'])
+ if 'function_error' in json_input:
+ ret.function_error = json_input['function_error']
return ret
@classmethod
@@ -928,10 +942,12 @@ class PTA:
The tuple (None, duration) represents a sleep time between states in us
:param orig_state: origin state, default UNINITIALIZED
- :returns (total energy in pJ, total duration in µs, end state, end parameters)
+ :returns: SimulationResult with duration in s, total energy in J, end state, and final parameters
"""
total_duration = 0.
+ total_duration_mae = 0.
total_energy = 0.
+ total_energy_error = 0.
state = self.state[orig_state]
param_dict = dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))])
for function in trace:
@@ -944,13 +960,20 @@ class PTA:
if function_name is None:
duration = function_args[0]
total_energy += state.get_energy(duration, param_dict)
+ if state.power.value_error is not None:
+ total_energy_error += (duration * state.power.eval_mae(param_dict, function_args))**2
total_duration += duration
+ # assumption: sleep is near-exact and does not contribute to the duration error
if accounting is not None:
accounting.sleep(duration)
else:
transition = state.get_transition(function_name)
- total_duration += transition.get_duration(param_dict, function_args)
+ total_duration += transition.duration.eval(param_dict, function_args)
+ if transition.duration.value_error is not None:
+ total_duration_mae += transition.duration.eval_mae(param_dict, function_args)**2
total_energy += transition.get_energy(param_dict, function_args)
+ if transition.energy.value_error is not None:
+ total_energy_error += transition.energy.eval_mae(param_dict, function_args)**2
param_dict = transition.get_params_after_transition(param_dict, function_args)
state = transition.destination
if accounting is not None:
@@ -966,7 +989,7 @@ class PTA:
param_dict = transition.get_params_after_transition(param_dict)
state = transition.destination
- return SimulationResult(total_duration, total_energy, state, param_dict)
+ return SimulationResult(total_duration, total_energy, state, param_dict, duration_mae=np.sqrt(total_duration_mae), energy_mae=np.sqrt(total_energy_error))
def update(self, static_model, param_model, static_error=None, analytic_error=None):
for state in self.state.values():