diff options
Diffstat (limited to 'lib/automata.py')
-rwxr-xr-x | lib/automata.py | 123 |
1 files changed, 119 insertions, 4 deletions
diff --git a/lib/automata.py b/lib/automata.py index b1cd235..8321754 100755 --- a/lib/automata.py +++ b/lib/automata.py @@ -1,3 +1,5 @@ +"""Classes and helper functions for PTA and other automata.""" + from functions import AnalyticFunction def _dict_to_list(input_dict: dict) -> list: @@ -15,36 +17,70 @@ def _attribute_to_json(static_value: float, param_function: AnalyticFunction) -> return ret class State: + """A single PTA state.""" + def __init__(self, name: str, power: float = 0, power_function: AnalyticFunction = None): + u""" + Create a new PTA state. + + arguments: + name -- state name + power -- static state power in µW + power_function -- parameterized state power in µW + """ self.name = name self.power = power self.power_function = power_function self.outgoing_transitions = {} def add_outgoing_transition(self, new_transition: object): + """Add a new outgoing transition.""" self.outgoing_transitions[new_transition.name] = new_transition def get_energy(self, duration: float, param_dict: dict = {}) -> float: + u""" + Return energy spent in state in pJ. + + arguments: + duration -- duration in µs + param_dict -- current parameters + """ if self.power_function: return self.power_function.eval(_dict_to_list(param_dict)) * duration return self.power * duration def get_transition(self, transition_name: str) -> object: + """Return Transition object for outgoing transtion transition_name.""" return self.outgoing_transitions[transition_name] - def has_interrupt_transitions(self): + def has_interrupt_transitions(self) -> bool: + """Check whether this state has any outgoing interrupt transitions.""" for trans in self.outgoing_transitions.values(): if trans.is_interrupt: return True return False def get_next_interrupt(self, parameters: dict) -> object: + """ + Return the outgoing interrupt transition with the lowet timeout. + + Must only be called if has_interrupt_transitions returned true. + + arguments: + parameters -- current parameter values + """ interrupts = filter(lambda x: x.is_interrupt, self.outgoing_transitions.values()) interrupts = sorted(interrupts, key = lambda x: x.get_timeout(parameters)) return interrupts[0] def dfs(self, depth: int): + """ + Return a generator object for depth-first search over all outgoing transitions. + + arguments: + depth -- search depth + """ if depth == 0: for trans in self.outgoing_transitions.values(): yield [trans.name] @@ -56,6 +92,7 @@ class State: yield new_suffix def to_json(self) -> dict: + """Return JSON encoding of this state object.""" ret = { 'name' : self.name, 'power' : _attribute_to_json(self.power, self.power_function) @@ -63,6 +100,8 @@ class State: return ret class Transition: + """A single PTA transition with one origin and one destination state.""" + def __init__(self, orig_state: State, dest_state: State, name: str, energy: float = 0, energy_function: AnalyticFunction = None, duration: float = 0, duration_function: AnalyticFunction = None, @@ -74,9 +113,9 @@ class Transition: Create a new transition between two PTA states. arguments: - orig_state -- origin (State object) - dest_state -- destination (State object) - name -- transition name, typically the same as a driver/library function name (str) + orig_state -- origin state + dest_state -- destination state + name -- transition name, typically the same as a driver/library function name """ self.name = name self.origin = orig_state @@ -94,21 +133,50 @@ class Transition: self.set_param = set_param def get_duration(self, param_dict: dict = {}, args: list = []) -> float: + u""" + Return transition duration in µs. + + arguments: + param_dict -- current parameter values + args -- function arguments + """ if self.duration_function: return self.duration_function.eval(_dict_to_list(param_dict), args) return self.duration def get_energy(self, param_dict: dict = {}, args: list = []) -> float: + u""" + Return transition energy cost in pJ. + + arguments: + param_dict -- current parameter values + args -- function arguments + """ if self.energy_function: return self.energy_function.eval(_dict_to_list(param_dict), args) return self.energy def get_timeout(self, param_dict: dict = {}) -> float: + u""" + Return transition timeout in µs. + + Returns 0 if the transition does not have a timeout. + + arguments: + param_dict -- current parameter values + args -- function arguments + """ if self.timeout_function: return self.timeout_function.eval(_dict_to_list(param_dict)) return self.timeout def get_params_after_transition(self, param_dict: dict, args: list = []) -> dict: + """ + Return the new parameter dict after taking this transition. + + parameter values may be affected by this transition's update function, + it's argument-to-param map, and its set_param settings. + """ if self.param_update_function: return self.param_update_function(param_dict, args) ret = param_dict.copy() @@ -121,6 +189,7 @@ class Transition: return ret def to_json(self) -> dict: + """Return JSON encoding of this transition object.""" ret = { 'name' : self.name, 'origin' : self.origin.name, @@ -147,8 +216,23 @@ def _json_get_static(base, attribute: str): return 0 class PTA: + """ + A parameterized priced timed automaton. All states are accepting. + + Suitable for simulation, model storage, and (soon) benchmark generation. + """ + def __init__(self, state_names: list = [], parameters: list = [], initial_param_values: list = None): + """ + Return a new PTA object. + + arguments: + state_names -- names of PTA states. Note that the PTA always contains + an initial UNINITIALIZED state, regardless of the content of state_names. + parameters -- names of PTA parameters + initial_param_values -- initial value for each parameter + """ self.states = dict([[state_name, State(state_name)] for state_name in state_names]) self.parameters = parameters.copy() if initial_param_values: @@ -162,6 +246,11 @@ class PTA: @classmethod def from_json(cls, json_input: dict): + """ + Return a PTA created from the provided JSON data. + + Compatible with the to_json method. + """ kwargs = {} for key in ('state_names', 'parameters', 'initial_param_values'): if key in json_input: @@ -195,6 +284,11 @@ class PTA: return pta def to_json(self) -> dict: + """ + Return JSON encoding of this PTA. + + Compatible with the from_json method. + """ ret = { 'parameters' : self.parameters, 'initial_param_values' : self.initial_param_values, @@ -204,12 +298,26 @@ class PTA: return ret def add_state(self, state_name: str, **kwargs): + """ + Add a new state. + + See the State() documentation for acceptable arguments. + """ if 'power_function' in kwargs and type(kwargs['power_function']) != AnalyticFunction: kwargs['power_function'] = AnalyticFunction(kwargs['power_function'], self.parameters, 0) self.states[state_name] = State(state_name, **kwargs) def add_transition(self, orig_state: str, dest_state: str, function_name: str, **kwargs): + """ + Add function_name as new transition from orig_state to dest_state. + + arguments: + orig_state -- origin state name. Must be known to PTA + dest_state -- destination state name. Must be known to PTA. + function_name -- function name + kwargs -- see Transition() documentation + """ orig_state = self.states[orig_state] dest_state = self.states[dest_state] for key in ('duration_function', 'energy_function', 'timeout_function'): @@ -221,6 +329,13 @@ class PTA: orig_state.add_outgoing_transition(new_transition) def dfs(self, depth: int = 10, orig_state: str = 'UNINITIALIZED'): + """ + Return a generator object for depth-first search starting at orig_state. + + arguments: + depth -- search depth + orig_state -- initial state for depth-first search + """ return self.states[orig_state].dfs(depth) def simulate(self, trace: list, orig_state: str = 'UNINITIALIZED'): |