diff options
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-x | lib/dfatool.py | 48 |
1 files changed, 2 insertions, 46 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 3151c65..cc07026 100755 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -16,7 +16,8 @@ from automata import PTA from functions import analytic from functions import AnalyticFunction from parameters import ParamStats -from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple, is_power_of_two +from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple +from utils import by_name_to_by_param arg_support_enabled = True @@ -180,26 +181,6 @@ class KeysightCSV: currents[i] = float(row[2]) * -1 return timestamps, currents -def by_name_to_by_param(by_name: dict): - """ - Convert aggregation by name to aggregation by name and parameter values. - """ - by_param = dict() - for name in by_name.keys(): - for i, parameters in enumerate(by_name[name]['param']): - param_key = (name, tuple(parameters)) - if param_key not in by_param: - by_param[param_key] = dict() - for key in by_name[name].keys(): - by_param[param_key][key] = list() - by_param[param_key]['attributes'] = by_name[name]['attributes'] - # special case for PTA models - if 'isa' in by_name[name]: - by_param[param_key]['isa'] = by_name[name]['isa'] - for attribute in by_name[name]['attributes']: - by_param[param_key][attribute].append(by_name[name][attribute][i]) - return by_param - def _xv_partitions_kfold(length, num_slices): pairs = [] @@ -1403,31 +1384,6 @@ def _add_trace_data_to_aggregate(aggregate, key, element): for datakey, dataval in element['offline_aggregates'].items(): aggregate[key][datakey].extend(dataval) -def filter_aggregate_by_param(aggregate, parameters, parameter_filter): - """ - Remove entries which do not have certain parameter values from `aggregate`. - - :param aggregate: aggregated measurement data, must be a dict conforming to - aggregate[state or transition name]['param'] = (first parameter value, second parameter value, ...) - and - aggregate[state or transition name]['attributes'] = [list of keys with measurement data, e.g. 'power' or 'duration'] - :param parameters: list of parameters, used to map parameter index to parameter name. parameters=['foo', ...] means 'foo' is the first parameter - :param parameter_filter: [[name, value], [name, value], ...] list of parameter values to keep, all others are removed. Values refer to normalizad parameter data. - """ - for param_name_and_value in parameter_filter: - param_index = parameters.index(param_name_and_value[0]) - param_value = soft_cast_int(param_name_and_value[1]) - names_to_remove = set() - for name in aggregate.keys(): - indices_to_keep = list(map(lambda x: x[param_index] == param_value, aggregate[name]['param'])) - aggregate[name]['param'] = list(map(lambda iv: iv[1], filter(lambda iv: indices_to_keep[iv[0]], enumerate(aggregate[name]['param'])))) - for attribute in aggregate[name]['attributes']: - aggregate[name][attribute] = aggregate[name][attribute][indices_to_keep] - if len(aggregate[name][attribute]) == 0: - names_to_remove.add(name) - for name in names_to_remove: - aggregate.pop(name) - def pta_trace_to_aggregate(traces, ignore_trace_indexes = []): u""" |