summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py170
1 files changed, 151 insertions, 19 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 7d6d5c9..6498176 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -361,6 +361,7 @@ def _preprocess_measurement(measurement):
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
'trace' : mim.analyze_states(charges, trigidx, vcalfunc),
+ 'expected_trace' : measurement['expected_trace'],
'has_mimosa_error' : mim.is_error,
'mimosa_errors' : mim.errors,
}
@@ -599,6 +600,21 @@ class RawData:
Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
* At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
MIMOSA files are parsed by the `MIMOSA` class.
+
+ Version 1:
+
+ * `ptalog.json`: measurement setup and traces. Contents:
+ `.opt.sleep`: state duration
+ `.opt.pta`: PTA
+ `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
+ `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
+ Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
+ Each transition must additionally contain `.args`
+ `.opt.files`: list of coresponding MIMOSA measurements.
+ `.opt.files[]` = ['abc123.mim']
+ `.opt.configs`: ....
+
+ tbd
"""
self.filenames = filenames.copy()
self.traces_by_fileno = []
@@ -607,6 +623,12 @@ class RawData:
self.preprocessed = False
self._parameter_names = None
+ with tarfile.open(filenames[0]) as tf:
+ for member in tf.getmembers():
+ if member.name == 'ptalog.json':
+ self.version = 1
+ break
+
def _state_is_too_short(self, online, offline, state_duration, next_transition):
# We cannot control when an interrupt causes a state to be left
if next_transition['plan']['level'] == 'epilogue':
@@ -624,14 +646,48 @@ class RawData:
# state_duration is stored as ms, not us
return offline['us'] > state_duration * 1500
- def _measurement_is_valid(self, processed_data):
+ def _measurement_is_valid_01(self, processed_data, repeat = 0):
+ """
+ Check if a dfatool v0 or v1 measurement is valid.
+
+ processed_data layout:
+ 'fileno' : measurement['fileno'],
+ 'info' : measurement['info'],
+ 'triggers' : len(trigidx),
+ 'first_trig' : trigidx[0] * 10,
+ 'calibration' : caldata,
+ 'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
+ 'expected_trace' : trace from PTA DFS (with parameter data)
+ mim.analyze_states returns a list of (alternating) states and transitions.
+ Each element is a dict containing:
+ - isa: 'state' oder 'transition'
+ - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
+ - raw_mean: Mittelwert der Rohwerte
+ - raw_std: Standardabweichung der Rohwerte
+ - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
+ - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ - us: Dauer
+
+ Nur falls isa == 'transition':
+ - timeout: Dauer des vorherigen Zustands
+ - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
+ - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
+ """
setup = self.setup_by_fileno[processed_data['fileno']]
- traces = self.traces_by_fileno[processed_data['fileno']]
+ traces = processed_data['expected_trace']
state_duration = setup['state_duration']
+
+ # Check MIMOSA error
+ if processed_data['has_mimosa_error']:
+ processed_data['error'] = '; '.join(processed_data['mimosa_errors'])
+ return False
+
# Check trigger count
sched_trigger_count = 0
for run in traces:
sched_trigger_count += len(run['trace'])
+ if repeat:
+ sched_trigger_count *= repeat
if sched_trigger_count != processed_data['triggers']:
processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
got = processed_data['triggers'],
@@ -654,7 +710,7 @@ class RawData:
self._parameter_names = sorted(online_trace_part['parameter'].keys())
if sorted(online_trace_part['parameter'].keys()) != self._parameter_names:
- processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent paramete set: should be {param_want:s}, is {param_is:s}'.format(
+ processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
@@ -683,7 +739,7 @@ class RawData:
return False
- if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
+ if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED' and len(traces[online_run_idx]['trace']) > online_trace_part_idx+1:
online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
try:
@@ -706,9 +762,9 @@ class RawData:
# TODO es gibt next_transitions ohne 'plan'
return True
- def _merge_measurement_into_online_data(self, measurement):
+ def _merge_online_and_offline(self, measurement):
online_datapoints = []
- traces = self.traces_by_fileno[measurement['fileno']]
+ traces = measurement['expected_trace'].copy()
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
@@ -767,14 +823,16 @@ class RawData:
offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['timeout'].append(
offline_trace_part['timeout'])
+ return traces
- def _concatenate_analyzed_traces(self):
- self.traces = []
- for trace in self.traces_by_fileno:
- self.traces.extend(trace)
- for i, trace in enumerate(self.traces):
+ def _concatenate_traces(self, list_of_traces):
+ trace_output = list()
+ for trace in list_of_traces:
+ trace_output.extend(trace.copy())
+ for i, trace in enumerate(trace_output):
trace['orig_id'] = trace['id']
trace['id'] = i
+ return trace_output
def get_preprocessed_data(self, verbose = True):
"""
@@ -833,6 +891,8 @@ class RawData:
return self.traces
if self.version == 0:
self._preprocess_0()
+ elif self.version == 1:
+ self._preprocess_1()
self.preprocessed = True
return self.traces
@@ -851,15 +911,20 @@ class RawData:
'fileno' : i,
'info' : member,
'setup' : self.setup_by_fileno[i],
- 'traces' : self.traces_by_fileno[i],
+ 'expected_trace' : self.traces_by_fileno[i],
})
with Pool() as pool:
measurements = pool.map(_preprocess_measurement, mim_files)
num_valid = 0
+ valid_traces = list()
for measurement in measurements:
- if self._measurement_is_valid(measurement):
- self._merge_measurement_into_online_data(measurement)
+
+ # Strip the last state (it is not part of the scheduled measurement)
+ measurement['trace'].pop()
+
+ if self._measurement_is_valid_01(measurement):
+ valid_traces.append(self._merge_online_and_offline(measurement))
num_valid += 1
else:
vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
@@ -869,7 +934,62 @@ class RawData:
vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
- self._concatenate_analyzed_traces()
+ self.traces = self._concatenate_traces(valid_traces)
+ self.preprocessing_stats = {
+ 'num_runs' : len(measurements),
+ 'num_valid' : num_valid
+ }
+
+ def _preprocess_1(self):
+ """Load raw MIMOSA data."""
+ mim_files = list()
+ for i, filename in enumerate(self.filenames):
+ traces_by_file = list()
+ mim_files_by_file = list()
+ with tarfile.open(filename) as tf:
+ for member in tf.getmembers():
+ _, extension = os.path.splitext(member.name)
+ if extension == '.mim':
+ mim_files_by_file.append({
+ 'content' : tf.extractfile(member).read(),
+ 'info' : member,
+ })
+ elif extension == '.json':
+ ptalog = json.load(tf.extractfile(member))
+ traces_by_file.extend(ptalog['traces'])
+ self.traces_by_fileno.append(self._concatenate_traces(traces_by_file))
+ self.setup_by_fileno.append({
+ 'mimosa_voltage' : ptalog['configs'][0]['voltage'],
+ 'mimosa_shunt' : ptalog['configs'][0]['shunt'],
+ 'state_duration' : ptalog['opt']['sleep']
+ })
+ for j, mim_file in enumerate(mim_files_by_file):
+ mim_file['setup'] = self.setup_by_fileno[i]
+ mim_file['expected_trace'] = ptalog['traces'][j]
+ mim_file['fileno'] = i
+ mim_files.extend(mim_files_by_file)
+
+ with Pool() as pool:
+ measurements = pool.map(_preprocess_measurement, mim_files)
+
+ num_valid = 0
+ valid_traces = list()
+ for measurement in measurements:
+ # The first online measurement is the UNINITIALIZED state. In v1,
+ # it is not part of the expected PTA trace -> remove it.
+ measurement['trace'].pop(0)
+ if self._measurement_is_valid_01(measurement, ptalog['opt']['repeat']):
+ valid_traces.append(self._merge_online_and_offline(measurement))
+ num_valid += 1
+ else:
+ vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
+ ar = self.filenames[measurement['fileno']],
+ m = measurement['info'].name,
+ e = measurement['error']))
+ vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
+ num_valid = num_valid,
+ num_total = len(measurements)))
+ self.traces = self._concatenate_traces(valid_traces)
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid
@@ -1892,7 +2012,7 @@ class MIMOSA:
return charges, triggers
- def load_data(self, raw_data, first_is_state = True):
+ def load_data(self, raw_data):
u"""
Load MIMOSA log data from a MIMOSA log file passed as raw byte string
@@ -1900,7 +2020,6 @@ class MIMOSA:
:returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
"""
- self.first_is_state = first_is_state
with io.BytesIO(raw_data) as data_object:
with tarfile.open(fileobj = data_object) as tf:
return self._load_tf(tf)
@@ -1948,6 +2067,13 @@ class MIMOSA:
self.is_error = True
self.errors.append('Unable to find start of first transition (log starts with trigger == {} != 0)'.format(prevtrig))
+ # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
+ # it terminated in the middle of a transition -- meaning that it was not
+ # measured in its entirety.
+ if triggers[-1] != 0:
+ self.is_error = True
+ self.errors.append('Log ends during a transition'.format(prevtrig))
+
# the device is reset for MIMOSA calibration in the first 10s and may
# send bogus interrupts -> bogus triggers
for i in range(1000000, triggers.shape[0]):
@@ -2124,7 +2250,7 @@ class MIMOSA:
:param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
:param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
- :returns: list of states and transitions, starting with a state and ending with a transition.
+ :returns: list of states and transitions, both starting andending with a state.
Each element is a dict containing:
* `isa`: 'state' or 'transition'
* `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
@@ -2141,7 +2267,13 @@ class MIMOSA:
previdx = 0
is_state = True
iterdata = []
- for idx in trigidx:
+
+ # The last state (between the last transition and end of file) may also
+ # be important. Pretend it ends when the log ends.
+ trigger_indices = trigidx.copy()
+ trigger_indices.append(len(charges))
+
+ for idx in trigger_indices:
range_raw = charges[previdx:idx]
range_ua = ua_func(range_raw)
substates = {}