summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rw-r--r--lib/dfatool.py2008
1 files changed, 0 insertions, 2008 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
deleted file mode 100644
index e8b5090..0000000
--- a/lib/dfatool.py
+++ /dev/null
@@ -1,2008 +0,0 @@
-#!/usr/bin/env python3
-
-import csv
-import io
-import json
-import logging
-import numpy as np
-import os
-import re
-import struct
-import tarfile
-import hashlib
-from multiprocessing import Pool
-from .utils import running_mean, soft_cast_int
-
-logger = logging.getLogger(__name__)
-
-try:
- from .pubcode import Code128
- import zbar
-
- zbar_available = True
-except ImportError:
- zbar_available = False
-
-
-arg_support_enabled = True
-
-
-class KeysightCSV:
- """Simple loader for Keysight CSV data, as exported by the windows software."""
-
- def __init__(self):
- """Create a new KeysightCSV object."""
- pass
-
- def load_data(self, filename: str):
- """
- Load log data from filename, return timestamps and currents.
-
- Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
- """
- with open(filename) as f:
- for i, _ in enumerate(f):
- pass
- timestamps = np.ndarray((i - 3), dtype=float)
- currents = np.ndarray((i - 3), dtype=float)
- # basically seek back to start
- with open(filename) as f:
- for _ in range(4):
- next(f)
- reader = csv.reader(f, delimiter=",")
- for i, row in enumerate(reader):
- timestamps[i] = float(row[0])
- currents[i] = float(row[2]) * -1
- return timestamps, currents
-
-
-def _preprocess_mimosa(measurement):
- setup = measurement["setup"]
- mim = MIMOSA(
- float(setup["mimosa_voltage"]),
- int(setup["mimosa_shunt"]),
- with_traces=measurement["with_traces"],
- )
- try:
- charges, triggers = mim.load_data(measurement["content"])
- trigidx = mim.trigger_edges(triggers)
- except EOFError as e:
- mim.errors.append("MIMOSA logfile error: {}".format(e))
- trigidx = list()
-
- if len(trigidx) == 0:
- mim.errors.append("MIMOSA log has no triggers")
- return {
- "fileno": measurement["fileno"],
- "info": measurement["info"],
- "has_datasource_error": len(mim.errors) > 0,
- "datasource_errors": mim.errors,
- "expected_trace": measurement["expected_trace"],
- "repeat_id": measurement["repeat_id"],
- }
-
- cal_edges = mim.calibration_edges(
- running_mean(mim.currents_nocal(charges[0 : trigidx[0]]), 10)
- )
- calfunc, caldata = mim.calibration_function(charges, cal_edges)
- vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
-
- processed_data = {
- "fileno": measurement["fileno"],
- "info": measurement["info"],
- "triggers": len(trigidx),
- "first_trig": trigidx[0] * 10,
- "calibration": caldata,
- "energy_trace": mim.analyze_states(charges, trigidx, vcalfunc),
- "has_datasource_error": len(mim.errors) > 0,
- "datasource_errors": mim.errors,
- }
-
- for key in ["expected_trace", "repeat_id"]:
- if key in measurement:
- processed_data[key] = measurement[key]
-
- return processed_data
-
-
-def _preprocess_etlog(measurement):
- setup = measurement["setup"]
- etlog = EnergyTraceLog(
- float(setup["voltage"]),
- int(setup["state_duration"]),
- measurement["transition_names"],
- with_traces=measurement["with_traces"],
- )
- try:
- etlog.load_data(measurement["content"])
- states_and_transitions = etlog.analyze_states(
- measurement["expected_trace"], measurement["repeat_id"]
- )
- except EOFError as e:
- etlog.errors.append("EnergyTrace logfile error: {}".format(e))
-
- processed_data = {
- "fileno": measurement["fileno"],
- "repeat_id": measurement["repeat_id"],
- "info": measurement["info"],
- "expected_trace": measurement["expected_trace"],
- "energy_trace": states_and_transitions,
- "has_datasource_error": len(etlog.errors) > 0,
- "datasource_errors": etlog.errors,
- }
-
- return processed_data
-
-
-class TimingData:
- """
- Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.
-
- Excpets a specific trace format and UART log output (as produced by
- generate-dfa-benchmark.py). Prunes states from output. (TODO)
- """
-
- def __init__(self, filenames):
- """
- Create a new TimingData object.
-
- Each filenames element corresponds to a measurement run.
- """
- self.filenames = filenames.copy()
- self.traces_by_fileno = []
- self.setup_by_fileno = []
- self.preprocessed = False
- self._parameter_names = None
- self.version = 0
-
- def _concatenate_analyzed_traces(self):
- self.traces = []
- for trace_group in self.traces_by_fileno:
- for trace in trace_group:
- # TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
- transitions = list(
- filter(lambda x: x["isa"] == "transition", trace["trace"])
- )
- self.traces.append({"id": trace["id"], "trace": transitions})
- for i, trace in enumerate(self.traces):
- trace["orig_id"] = trace["id"]
- trace["id"] = i
- for log_entry in trace["trace"]:
- paramkeys = sorted(log_entry["parameter"].keys())
- if "param" not in log_entry["offline_aggregates"]:
- log_entry["offline_aggregates"]["param"] = list()
- if "duration" in log_entry["offline_aggregates"]:
- for i in range(len(log_entry["offline_aggregates"]["duration"])):
- paramvalues = list()
- for paramkey in paramkeys:
- if type(log_entry["parameter"][paramkey]) is list:
- paramvalues.append(
- soft_cast_int(log_entry["parameter"][paramkey][i])
- )
- else:
- paramvalues.append(
- soft_cast_int(log_entry["parameter"][paramkey])
- )
- if arg_support_enabled and "args" in log_entry:
- paramvalues.extend(map(soft_cast_int, log_entry["args"]))
- log_entry["offline_aggregates"]["param"].append(paramvalues)
-
- def _preprocess_0(self):
- for filename in self.filenames:
- with open(filename, "r") as f:
- log_data = json.load(f)
- self.traces_by_fileno.extend(log_data["traces"])
- self._concatenate_analyzed_traces()
-
- def get_preprocessed_data(self):
- """
- Return a list of DFA traces annotated with timing and parameter data.
-
- Suitable for the PTAModel constructor.
- See PTAModel(...) docstring for format details.
- """
- if self.preprocessed:
- return self.traces
- if self.version == 0:
- self._preprocess_0()
- self.preprocessed = True
- return self.traces
-
-
-def sanity_check_aggregate(aggregate):
- for key in aggregate:
- if "param" not in aggregate[key]:
- raise RuntimeError("aggregate[{}][param] does not exist".format(key))
- if "attributes" not in aggregate[key]:
- raise RuntimeError("aggregate[{}][attributes] does not exist".format(key))
- for attribute in aggregate[key]["attributes"]:
- if attribute not in aggregate[key]:
- raise RuntimeError(
- "aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]".format(
- key, attribute, key
- )
- )
- param_len = len(aggregate[key]["param"])
- attr_len = len(aggregate[key][attribute])
- if param_len != attr_len:
- raise RuntimeError(
- "parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}".format(
- key, param_len, key, attribute, attr_len
- )
- )
-
-
-class RawData:
- """
- Loader for hardware model traces measured with MIMOSA.
-
- Expects a specific trace format and UART log output (as produced by the
- dfatool benchmark generator). Loads data, prunes bogus measurements, and
- provides preprocessed data suitable for PTAModel. Results are cached on the
- file system, making subsequent loads near-instant.
- """
-
- def __init__(self, filenames, with_traces=False):
- """
- Create a new RawData object.
-
- Each filename element corresponds to a measurement run.
- It must be a tar archive with the following contents:
-
- Version 0:
-
- * `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
- `mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
- * `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
- Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
- Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
- Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
- Each transition must additionally contain `.plan.level` ("user" or "epilogue").
- Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
- * At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
- MIMOSA files are parsed by the `MIMOSA` class.
-
- Version 1:
-
- * `ptalog.json`: measurement setup and traces. Contents:
- `.opt.sleep`: state duration
- `.opt.pta`: PTA
- `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
- `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
- Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
- Each transition must additionally contain `.args`
- `.opt.files`: list of coresponding MIMOSA measurements.
- `.opt.files[]` = ['abc123.mim', ...]
- `.opt.configs`: ....
- * MIMOSA log files (`*.mim`) as specified in `.opt.files`
-
- Version 2:
-
- * `ptalog.json`: measurement setup and traces. Contents:
- `.opt.sleep`: state duration
- `.opt.pta`: PTA
- `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
- `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
- Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
- Each transition must additionally contain `.args` and `.duration`
- * `.duration`: list of durations, one per repetition
- `.opt.files`: list of coresponding EnergyTrace measurements.
- `.opt.files[]` = ['abc123.etlog', ...]
- `.opt.configs`: ....
- * EnergyTrace log files (`*.etlog`) as specified in `.opt.files`
-
- If a cached result for a file is available, it is loaded and the file
- is not preprocessed, unless `with_traces` is set.
-
- tbd
- """
- self.with_traces = with_traces
- self.filenames = filenames.copy()
- self.traces_by_fileno = []
- self.setup_by_fileno = []
- self.version = 0
- self.preprocessed = False
- self._parameter_names = None
- self.ignore_clipping = False
- self.pta = None
-
- with tarfile.open(filenames[0]) as tf:
- for member in tf.getmembers():
- if member.name == "ptalog.json" and self.version == 0:
- self.version = 1
- # might also be version 2
- # depends on whether *.etlog exists or not
- elif ".etlog" in member.name:
- self.version = 2
- break
-
- self.set_cache_file()
- if not with_traces:
- self.load_cache()
-
- def set_cache_file(self):
- cache_key = hashlib.sha256("!".join(self.filenames).encode()).hexdigest()
- self.cache_dir = os.path.dirname(self.filenames[0]) + "/cache"
- self.cache_file = "{}/{}.json".format(self.cache_dir, cache_key)
-
- def load_cache(self):
- if os.path.exists(self.cache_file):
- with open(self.cache_file, "r") as f:
- cache_data = json.load(f)
- self.filenames = cache_data["filenames"]
- self.traces = cache_data["traces"]
- self.preprocessing_stats = cache_data["preprocessing_stats"]
- if "pta" in cache_data:
- self.pta = cache_data["pta"]
- self.setup_by_fileno = cache_data["setup_by_fileno"]
- self.preprocessed = True
-
- def save_cache(self):
- if self.with_traces:
- return
- try:
- os.mkdir(self.cache_dir)
- except FileExistsError:
- pass
- with open(self.cache_file, "w") as f:
- cache_data = {
- "filenames": self.filenames,
- "traces": self.traces,
- "preprocessing_stats": self.preprocessing_stats,
- "pta": self.pta,
- "setup_by_fileno": self.setup_by_fileno,
- }
- json.dump(cache_data, f)
-
- def _state_is_too_short(self, online, offline, state_duration, next_transition):
- # We cannot control when an interrupt causes a state to be left
- if next_transition["plan"]["level"] == "epilogue":
- return False
-
- # Note: state_duration is stored as ms, not us
- return offline["us"] < state_duration * 500
-
- def _state_is_too_long(self, online, offline, state_duration, prev_transition):
- # If the previous state was left by an interrupt, we may have some
- # waiting time left over. So it's okay if the current state is longer
- # than expected.
- if prev_transition["plan"]["level"] == "epilogue":
- return False
- # state_duration is stored as ms, not us
- return offline["us"] > state_duration * 1500
-
- def _measurement_is_valid_2(self, processed_data):
- """
- Check if a dfatool v2 measurement is valid.
-
- processed_data layout:
- 'fileno' : measurement['fileno'],
- 'info' : measurement['info'],
- 'energy_trace' : etlog.analyze_states()
- A sequence of unnamed, unparameterized states and transitions with
- power and timing data
- 'expected_trace' : trace from PTA DFS (with parameter data)
- etlog.analyze_states returns a list of (alternating) states and transitions.
- Each element is a dict containing:
- - isa: 'state' oder 'transition'
- - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
- - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
- - s: duration
-
- if isa == 'transition':
- - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands
- - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands
- """
-
- # Check for low-level parser errors
- if processed_data["has_datasource_error"]:
- processed_data["error"] = "; ".join(processed_data["datasource_errors"])
- return False
-
- # Note that the low-level parser (EnergyTraceLog) already checks
- # whether the transition count is correct
-
- return True
-
- def _measurement_is_valid_01(self, processed_data):
- """
- Check if a dfatool v0 or v1 measurement is valid.
-
- processed_data layout:
- 'fileno' : measurement['fileno'],
- 'info' : measurement['info'],
- 'triggers' : len(trigidx),
- 'first_trig' : trigidx[0] * 10,
- 'calibration' : caldata,
- 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
- A sequence of unnamed, unparameterized states and transitions with
- power and timing data
- 'expected_trace' : trace from PTA DFS (with parameter data)
- mim.analyze_states returns a list of (alternating) states and transitions.
- Each element is a dict containing:
- - isa: 'state' oder 'transition'
- - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
- - raw_mean: Mittelwert der Rohwerte
- - raw_std: Standardabweichung der Rohwerte
- - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
- - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
- - us: Dauer
-
- Nur falls isa == 'transition':
- - timeout: Dauer des vorherigen Zustands
- - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
- - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
- """
- setup = self.setup_by_fileno[processed_data["fileno"]]
- if "expected_trace" in processed_data:
- traces = processed_data["expected_trace"]
- else:
- traces = self.traces_by_fileno[processed_data["fileno"]]
- state_duration = setup["state_duration"]
-
- # Check MIMOSA error
- if processed_data["has_datasource_error"]:
- processed_data["error"] = "; ".join(processed_data["datasource_errors"])
- return False
-
- # Check trigger count
- sched_trigger_count = 0
- for run in traces:
- sched_trigger_count += len(run["trace"])
- if sched_trigger_count != processed_data["triggers"]:
- processed_data[
- "error"
- ] = "got {got:d} trigger edges, expected {exp:d}".format(
- got=processed_data["triggers"], exp=sched_trigger_count
- )
- return False
- # Check state durations. Very short or long states can indicate a
- # missed trigger signal which wasn't detected due to duplicate
- # triggers elsewhere
- online_datapoints = []
- for run_idx, run in enumerate(traces):
- for trace_part_idx in range(len(run["trace"])):
- online_datapoints.append((run_idx, trace_part_idx))
- for offline_idx, online_ref in enumerate(online_datapoints):
- online_run_idx, online_trace_part_idx = online_ref
- offline_trace_part = processed_data["energy_trace"][offline_idx]
- online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
-
- if self._parameter_names is None:
- self._parameter_names = sorted(online_trace_part["parameter"].keys())
-
- if sorted(online_trace_part["parameter"].keys()) != self._parameter_names:
- processed_data[
- "error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}".format(
- off_idx=offline_idx,
- on_idx=online_run_idx,
- on_sub=online_trace_part_idx,
- on_name=online_trace_part["name"],
- param_want=self._parameter_names,
- param_is=sorted(online_trace_part["parameter"].keys()),
- )
-
- if online_trace_part["isa"] != offline_trace_part["isa"]:
- processed_data[
- "error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}".format(
- off_idx=offline_idx,
- on_idx=online_run_idx,
- on_sub=online_trace_part_idx,
- on_name=online_trace_part["name"],
- off_isa=offline_trace_part["isa"],
- on_isa=online_trace_part["isa"],
- )
- return False
-
- # Clipping in UNINITIALIZED (offline_idx == 0) can happen during
- # calibration and is handled by MIMOSA
- if (
- offline_idx != 0
- and offline_trace_part["clip_rate"] != 0
- and not self.ignore_clipping
- ):
- processed_data[
- "error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time".format(
- off_idx=offline_idx,
- on_idx=online_run_idx,
- on_sub=online_trace_part_idx,
- on_name=online_trace_part["name"],
- clip=offline_trace_part["clip_rate"] * 100,
- )
- return False
-
- if (
- online_trace_part["isa"] == "state"
- and online_trace_part["name"] != "UNINITIALIZED"
- and len(traces[online_run_idx]["trace"]) > online_trace_part_idx + 1
- ):
- online_prev_transition = traces[online_run_idx]["trace"][
- online_trace_part_idx - 1
- ]
- online_next_transition = traces[online_run_idx]["trace"][
- online_trace_part_idx + 1
- ]
- try:
- if self._state_is_too_short(
- online_trace_part,
- offline_trace_part,
- state_duration,
- online_next_transition,
- ):
- processed_data[
- "error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)".format(
- off_idx=offline_idx,
- on_idx=online_run_idx,
- on_sub=online_trace_part_idx,
- on_name=online_trace_part["name"],
- dur=offline_trace_part["us"],
- )
- return False
- if self._state_is_too_long(
- online_trace_part,
- offline_trace_part,
- state_duration,
- online_prev_transition,
- ):
- processed_data[
- "error"
- ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)".format(
- off_idx=offline_idx,
- on_idx=online_run_idx,
- on_sub=online_trace_part_idx,
- on_name=online_trace_part["name"],
- dur=offline_trace_part["us"],
- )
- return False
- except KeyError:
- pass
- # TODO es gibt next_transitions ohne 'plan'
- return True
-
- def _merge_online_and_offline(self, measurement):
- # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
- # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
- # (appends data from measurement['energy_trace'])
- # If measurement['expected_trace'] exists, it is edited in place instead
- online_datapoints = []
- if "expected_trace" in measurement:
- traces = measurement["expected_trace"]
- traces = self.traces_by_fileno[measurement["fileno"]]
- else:
- traces = self.traces_by_fileno[measurement["fileno"]]
- for run_idx, run in enumerate(traces):
- for trace_part_idx in range(len(run["trace"])):
- online_datapoints.append((run_idx, trace_part_idx))
- for offline_idx, online_ref in enumerate(online_datapoints):
- online_run_idx, online_trace_part_idx = online_ref
- offline_trace_part = measurement["energy_trace"][offline_idx]
- online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
-
- if "offline" not in online_trace_part:
- online_trace_part["offline"] = [offline_trace_part]
- else:
- online_trace_part["offline"].append(offline_trace_part)
-
- paramkeys = sorted(online_trace_part["parameter"].keys())
-
- paramvalues = list()
-
- for paramkey in paramkeys:
- if type(online_trace_part["parameter"][paramkey]) is list:
- paramvalues.append(
- soft_cast_int(
- online_trace_part["parameter"][paramkey][
- measurement["repeat_id"]
- ]
- )
- )
- else:
- paramvalues.append(
- soft_cast_int(online_trace_part["parameter"][paramkey])
- )
-
- # NB: Unscheduled transitions do not have an 'args' field set.
- # However, they should only be caused by interrupts, and
- # interrupts don't have args anyways.
- if arg_support_enabled and "args" in online_trace_part:
- paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))
-
- if "offline_aggregates" not in online_trace_part:
- online_trace_part["offline_attributes"] = [
- "power",
- "duration",
- "energy",
- ]
- online_trace_part["offline_aggregates"] = {
- "power": [],
- "duration": [],
- "power_std": [],
- "energy": [],
- "paramkeys": [],
- "param": [],
- }
- if online_trace_part["isa"] == "transition":
- online_trace_part["offline_attributes"].extend(
- ["rel_energy_prev", "rel_energy_next", "timeout"]
- )
- online_trace_part["offline_aggregates"]["rel_energy_prev"] = []
- online_trace_part["offline_aggregates"]["rel_energy_next"] = []
- online_trace_part["offline_aggregates"]["timeout"] = []
-
- # Note: All state/transitions are 20us "too long" due to injected
- # active wait states. These are needed to work around MIMOSA's
- # relatively low sample rate of 100 kHz (10us) and removed here.
- online_trace_part["offline_aggregates"]["power"].append(
- offline_trace_part["uW_mean"]
- )
- online_trace_part["offline_aggregates"]["duration"].append(
- offline_trace_part["us"] - 20
- )
- online_trace_part["offline_aggregates"]["power_std"].append(
- offline_trace_part["uW_std"]
- )
- online_trace_part["offline_aggregates"]["energy"].append(
- offline_trace_part["uW_mean"] * (offline_trace_part["us"] - 20)
- )
- online_trace_part["offline_aggregates"]["paramkeys"].append(paramkeys)
- online_trace_part["offline_aggregates"]["param"].append(paramvalues)
- if online_trace_part["isa"] == "transition":
- online_trace_part["offline_aggregates"]["rel_energy_prev"].append(
- offline_trace_part["uW_mean_delta_prev"]
- * (offline_trace_part["us"] - 20)
- )
- online_trace_part["offline_aggregates"]["rel_energy_next"].append(
- offline_trace_part["uW_mean_delta_next"]
- * (offline_trace_part["us"] - 20)
- )
- online_trace_part["offline_aggregates"]["timeout"].append(
- offline_trace_part["timeout"]
- )
-
- def _merge_online_and_etlog(self, measurement):
- # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
- # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
- # (appends data from measurement['energy_trace'])
- online_datapoints = []
- traces = self.traces_by_fileno[measurement["fileno"]]
- for run_idx, run in enumerate(traces):
- for trace_part_idx in range(len(run["trace"])):
- online_datapoints.append((run_idx, trace_part_idx))
- for offline_idx, online_ref in enumerate(online_datapoints):
- online_run_idx, online_trace_part_idx = online_ref
- offline_trace_part = measurement["energy_trace"][offline_idx]
- online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
-
- if "offline" not in online_trace_part:
- online_trace_part["offline"] = [offline_trace_part]
- else:
- online_trace_part["offline"].append(offline_trace_part)
-
- paramkeys = sorted(online_trace_part["parameter"].keys())
-
- paramvalues = list()
-
- for paramkey in paramkeys:
- if type(online_trace_part["parameter"][paramkey]) is list:
- paramvalues.append(
- soft_cast_int(
- online_trace_part["parameter"][paramkey][
- measurement["repeat_id"]
- ]
- )
- )
- else:
- paramvalues.append(
- soft_cast_int(online_trace_part["parameter"][paramkey])
- )
-
- # NB: Unscheduled transitions do not have an 'args' field set.
- # However, they should only be caused by interrupts, and
- # interrupts don't have args anyways.
- if arg_support_enabled and "args" in online_trace_part:
- paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))
-
- if "offline_aggregates" not in online_trace_part:
- online_trace_part["offline_aggregates"] = {
- "offline_attributes": ["power", "duration", "energy"],
- "duration": list(),
- "power": list(),
- "power_std": list(),
- "energy": list(),
- "paramkeys": list(),
- "param": list(),
- }
-
- offline_aggregates = online_trace_part["offline_aggregates"]
-
- # if online_trace_part['isa'] == 'transitions':
- # online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
- # offline_aggregates['rel_energy_prev'] = list()
- # offline_aggregates['rel_energy_next'] = list()
-
- offline_aggregates["duration"].append(offline_trace_part["s"] * 1e6)
- offline_aggregates["power"].append(offline_trace_part["W_mean"] * 1e6)
- offline_aggregates["power_std"].append(offline_trace_part["W_std"] * 1e6)
- offline_aggregates["energy"].append(
- offline_trace_part["W_mean"] * offline_trace_part["s"] * 1e12
- )
- offline_aggregates["paramkeys"].append(paramkeys)
- offline_aggregates["param"].append(paramvalues)
-
- # if online_trace_part['isa'] == 'transition':
- # offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12)
- # offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12)
-
- def _concatenate_traces(self, list_of_traces):
- """
- Concatenate `list_of_traces` (list of lists) into a single trace while adjusting trace IDs.
-
- :param list_of_traces: List of list of traces.
- :returns: List of traces with ['id'] in ascending order and ['orig_id'] as previous ['id']
- """
-
- trace_output = list()
- for trace in list_of_traces:
- trace_output.extend(trace.copy())
- for i, trace in enumerate(trace_output):
- trace["orig_id"] = trace["id"]
- trace["id"] = i
- return trace_output
-
- def get_preprocessed_data(self):
- """
- Return a list of DFA traces annotated with energy, timing, and parameter data.
- The list is cached on disk, unless the constructor was called with `with_traces` set.
-
- Each DFA trace contains the following elements:
- * `id`: Numeric ID, starting with 1
- * `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
- * `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
- * `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.
-
- Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
- * `isa`: "state" or "transition"
- * `name`: name
- * `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
- Entry contents:
- - `clip_rate`: rate of clipped energy measurements, 0 .. 1
- - `raw_mean`: mean raw MIMOSA value
- - `raw_std`: standard deviation of raw MIMOSA value
- - `uW_mean`: mean power draw, uW
- - `uw_std`: standard deviation of power draw, uW
- - `us`: state/transition duration, us
- - `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
- - `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
- - `timeout`: (only for transitions) duration of previous state, us
- * `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
- - `duration`: state/transition durations ("us"), us
- - `energy`: state/transition energy ("us * uW_mean"), us
- - `power`: mean power draw ("uW_mean"), uW
- - `power_std`: standard deviations of power draw ("uW_std"), uW^2
- - `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
- - `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
- - `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
- - `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
- - `timeout`: (only for transitions) duration of previous state, us
- * `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of themodel.
- This list ultimately decides which hardware/software attributes the model describes.
- If isa == state, it contains power, duration, energy
- If isa == transition, it contains power, duration, energy, rel_energy_prev, rel_energy_next, timeout
- * `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
- Entry contents for isa == state:
- - `time`: state/transition
- Entry contents for isa == transition:
- - `timeout`: Duration of previous state, measured using on-board timers
- * `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
- * `plan`: Dictionary describing expected behaviour according to schedule / offline model.
- Contents for isa == state: `energy`, `power`, `time`
- Contents for isa == transition: `energy`, `timeout`, `level`.
- If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
- Each transition also contains:
- * `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
- * `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
- """
- if self.preprocessed:
- return self.traces
- if self.version == 0:
- self._preprocess_012(0)
- elif self.version == 1:
- self._preprocess_012(1)
- elif self.version == 2:
- self._preprocess_012(2)
- self.preprocessed = True
- self.save_cache()
- return self.traces
-
- def _preprocess_012(self, version):
- """Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
- offline_data = []
- for i, filename in enumerate(self.filenames):
-
- if version == 0:
-
- with tarfile.open(filename) as tf:
- self.setup_by_fileno.append(json.load(tf.extractfile("setup.json")))
- self.traces_by_fileno.append(
- json.load(tf.extractfile("src/apps/DriverEval/DriverLog.json"))
- )
- for member in tf.getmembers():
- _, extension = os.path.splitext(member.name)
- if extension == ".mim":
- offline_data.append(
- {
- "content": tf.extractfile(member).read(),
- "fileno": i,
- "info": member,
- "setup": self.setup_by_fileno[i],
- "with_traces": self.with_traces,
- }
- )
-
- elif version == 1:
-
- new_filenames = list()
- with tarfile.open(filename) as tf:
- ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
- self.pta = ptalog["pta"]
-
- # Benchmark code may be too large to be executed in a single
- # run, so benchmarks (a benchmark is basically a list of DFA runs)
- # may be split up. To accomodate this, ptalog['traces'] is
- # a list of lists: ptalog['traces'][0] corresponds to the
- # first benchmark part, ptalog['traces'][1] to the
- # second, and so on. ptalog['traces'][0][0] is the first
- # trace (a sequence of states and transitions) in the
- # first benchmark part, ptalog['traces'][0][1] the second, etc.
- #
- # As traces are typically repeated to minimize the effect
- # of random noise, observations for each benchmark part
- # are also lists. In this case, this applies in two
- # cases: traces[i][j]['parameter'][some_param] is either
- # a value (if the parameter is controlld by software)
- # or a list (if the parameter is known a posteriori, e.g.
- # "how many retransmissions did this packet take?").
- #
- # The second case is the MIMOSA energy measurements, which
- # are listed in ptalog['files']. ptalog['files'][0]
- # contains a list of files for the first benchmark part,
- # ptalog['files'][0][0] is its first iteration/repetition,
- # ptalog['files'][0][1] the second, etc.
-
- for j, traces in enumerate(ptalog["traces"]):
- new_filenames.append("{}#{}".format(filename, j))
- self.traces_by_fileno.append(traces)
- self.setup_by_fileno.append(
- {
- "mimosa_voltage": ptalog["configs"][j]["voltage"],
- "mimosa_shunt": ptalog["configs"][j]["shunt"],
- "state_duration": ptalog["opt"]["sleep"],
- }
- )
- for repeat_id, mim_file in enumerate(ptalog["files"][j]):
- member = tf.getmember(mim_file)
- offline_data.append(
- {
- "content": tf.extractfile(member).read(),
- "fileno": j,
- "info": member,
- "setup": self.setup_by_fileno[j],
- "repeat_id": repeat_id,
- "expected_trace": ptalog["traces"][j],
- "with_traces": self.with_traces,
- }
- )
- self.filenames = new_filenames
-
- elif version == 2:
-
- new_filenames = list()
- with tarfile.open(filename) as tf:
- ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
- self.pta = ptalog["pta"]
-
- # Benchmark code may be too large to be executed in a single
- # run, so benchmarks (a benchmark is basically a list of DFA runs)
- # may be split up. To accomodate this, ptalog['traces'] is
- # a list of lists: ptalog['traces'][0] corresponds to the
- # first benchmark part, ptalog['traces'][1] to the
- # second, and so on. ptalog['traces'][0][0] is the first
- # trace (a sequence of states and transitions) in the
- # first benchmark part, ptalog['traces'][0][1] the second, etc.
- #
- # As traces are typically repeated to minimize the effect
- # of random noise, observations for each benchmark part
- # are also lists. In this case, this applies in two
- # cases: traces[i][j]['parameter'][some_param] is either
- # a value (if the parameter is controlld by software)
- # or a list (if the parameter is known a posteriori, e.g.
- # "how many retransmissions did this packet take?").
- #
- # The second case is the MIMOSA energy measurements, which
- # are listed in ptalog['files']. ptalog['files'][0]
- # contains a list of files for the first benchmark part,
- # ptalog['files'][0][0] is its first iteration/repetition,
- # ptalog['files'][0][1] the second, etc.
-
- # generate-dfa-benchmark uses TimingHarness to obtain timing data.
- # Data is placed in 'offline_aggregates', which is also
- # where we are going to store power/energy data.
- # In case of invalid measurements, this can lead to a
- # mismatch between duration and power/energy data, e.g.
- # where duration = [A, B, C], power = [a, b], B belonging
- # to an invalid measurement and thus power[b] corresponding
- # to duration[C]. At the moment, this is harmless, but in the
- # future it might not be.
- if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
- for trace_group in ptalog["traces"]:
- for trace in trace_group:
- for state_or_transition in trace["trace"]:
- offline_aggregates = state_or_transition.pop(
- "offline_aggregates", None
- )
- if offline_aggregates:
- state_or_transition[
- "online_aggregates"
- ] = offline_aggregates
-
- for j, traces in enumerate(ptalog["traces"]):
- new_filenames.append("{}#{}".format(filename, j))
- self.traces_by_fileno.append(traces)
- self.setup_by_fileno.append(
- {
- "voltage": ptalog["configs"][j]["voltage"],
- "state_duration": ptalog["opt"]["sleep"],
- }
- )
- for repeat_id, etlog_file in enumerate(ptalog["files"][j]):
- member = tf.getmember(etlog_file)
- offline_data.append(
- {
- "content": tf.extractfile(member).read(),
- "fileno": j,
- "info": member,
- "setup": self.setup_by_fileno[j],
- "repeat_id": repeat_id,
- "expected_trace": ptalog["traces"][j],
- "with_traces": self.with_traces,
- "transition_names": list(
- map(
- lambda x: x["name"],
- ptalog["pta"]["transitions"],
- )
- ),
- }
- )
- self.filenames = new_filenames
- # TODO remove 'offline_aggregates' from pre-parse data and place
- # it under 'online_aggregates' or similar instead. This way, if
- # a .etlog file fails to parse, its corresponding duration data
- # will not linger in 'offline_aggregates' and confuse the hell
- # out of other code paths
-
- with Pool() as pool:
- if self.version <= 1:
- measurements = pool.map(_preprocess_mimosa, offline_data)
- elif self.version == 2:
- measurements = pool.map(_preprocess_etlog, offline_data)
-
- num_valid = 0
- for measurement in measurements:
-
- if "energy_trace" not in measurement:
- logger.warning(
- "Skipping {ar:s}/{m:s}: {e:s}".format(
- ar=self.filenames[measurement["fileno"]],
- m=measurement["info"].name,
- e="; ".join(measurement["datasource_errors"]),
- )
- )
- continue
-
- if version == 0:
- # Strip the last state (it is not part of the scheduled measurement)
- measurement["energy_trace"].pop()
- elif version == 1:
- # The first online measurement is the UNINITIALIZED state. In v1,
- # it is not part of the expected PTA trace -> remove it.
- measurement["energy_trace"].pop(0)
-
- if version == 0 or version == 1:
- if self._measurement_is_valid_01(measurement):
- self._merge_online_and_offline(measurement)
- num_valid += 1
- else:
- logger.warning(
- "Skipping {ar:s}/{m:s}: {e:s}".format(
- ar=self.filenames[measurement["fileno"]],
- m=measurement["info"].name,
- e=measurement["error"],
- )
- )
- elif version == 2:
- if self._measurement_is_valid_2(measurement):
- self._merge_online_and_etlog(measurement)
- num_valid += 1
- else:
- logger.warning(
- "Skipping {ar:s}/{m:s}: {e:s}".format(
- ar=self.filenames[measurement["fileno"]],
- m=measurement["info"].name,
- e=measurement["error"],
- )
- )
- logger.info(
- "{num_valid:d}/{num_total:d} measurements are valid".format(
- num_valid=num_valid, num_total=len(measurements)
- )
- )
- if version == 0:
- self.traces = self._concatenate_traces(self.traces_by_fileno)
- elif version == 1:
- self.traces = self._concatenate_traces(
- map(lambda x: x["expected_trace"], measurements)
- )
- self.traces = self._concatenate_traces(self.traces_by_fileno)
- elif version == 2:
- self.traces = self._concatenate_traces(self.traces_by_fileno)
- self.preprocessing_stats = {
- "num_runs": len(measurements),
- "num_valid": num_valid,
- }
-
-
-def _add_trace_data_to_aggregate(aggregate, key, element):
- # Only cares about element['isa'], element['offline_aggregates'], and
- # element['plan']['level']
- if key not in aggregate:
- aggregate[key] = {"isa": element["isa"]}
- for datakey in element["offline_aggregates"].keys():
- aggregate[key][datakey] = []
- if element["isa"] == "state":
- aggregate[key]["attributes"] = ["power"]
- else:
- # TODO do not hardcode values
- aggregate[key]["attributes"] = [
- "duration",
- "energy",
- "rel_energy_prev",
- "rel_energy_next",
- ]
- # Uncomment this line if you also want to analyze mean transition power
- # aggrgate[key]['attributes'].append('power')
- if "plan" in element and element["plan"]["level"] == "epilogue":
- aggregate[key]["attributes"].insert(0, "timeout")
- attributes = aggregate[key]["attributes"].copy()
- for attribute in attributes:
- if attribute not in element["offline_aggregates"]:
- aggregate[key]["attributes"].remove(attribute)
- for datakey, dataval in element["offline_aggregates"].items():
- aggregate[key][datakey].extend(dataval)
-
-
-def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
- u"""
- Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.
-
- arguments:
- traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
- Jeder Lauf:
- - id: int Nummer des Laufs, beginnend bei 1
- - trace: [ ... Liste von Zuständen und Transitionen
- Jeweils:
- - name: str Name
- - isa: str state // transition
- - parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
- - args: [ Funktionsargumente, falls isa == 'transition' ]
- - offline_aggregates:
- - power: [float(uW)] Mittlere Leistung während Zustand/Transitions
- - power_std: [float(uW^2)] Standardabweichung der Leistung
- - duration: [int(us)] Dauer
- - energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
- - clip_rate: [float(0..1)] Clipping
- - paramkeys: [[str]] Name der berücksichtigten Parameter
- - param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
- Falls isa == 'transition':
- - timeout: [int(us)] Dauer des vorherigen Zustands
- - rel_energy_prev: [int(pJ)]
- - rel_energy_next: [int(pJ)]
- ]
- ]
- ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.
-
- returns a tuple of three elements:
- by_name -- measurements aggregated by state/transition name, annotated with parameter values
- parameter_names -- list of parameter names
- arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function
-
- by_name layout:
- Dictionary with one key per state/transition ('send', 'TX', ...).
- Each element is in turn a dict with the following elements:
- - isa: 'state' or 'transition'
- - power: list of mean power measurements in µW
- - duration: list of durations in µs
- - power_std: list of stddev of power per state/transition
- - energy: consumed energy (power*duration) in pJ
- - paramkeys: list of parameter names in each measurement (-> list of lists)
- - param: list of parameter values in each measurement (-> list of lists)
- - attributes: list of keys that should be analyzed,
- e.g. ['power', 'duration']
- additionally, only if isa == 'transition':
- - timeout: list of duration of previous state in µs
- - rel_energy_prev: transition energy relative to previous state mean power in pJ
- - rel_energy_next: transition energy relative to next state mean power in pJ
- """
- arg_count = dict()
- by_name = dict()
- parameter_names = sorted(traces[0]["trace"][0]["parameter"].keys())
- for run in traces:
- if run["id"] not in ignore_trace_indexes:
- for elem in run["trace"]:
- if (
- elem["isa"] == "transition"
- and not elem["name"] in arg_count
- and "args" in elem
- ):
- arg_count[elem["name"]] = len(elem["args"])
- if elem["name"] != "UNINITIALIZED":
- _add_trace_data_to_aggregate(by_name, elem["name"], elem)
- for elem in by_name.values():
- for key in elem["attributes"]:
- elem[key] = np.array(elem[key])
- return by_name, parameter_names, arg_count
-
-
-class EnergyTraceLog:
- """
- EnergyTrace log loader for DFA traces.
-
- Expects an EnergyTrace log file generated via msp430-etv / energytrace-util
- and a dfatool-generated benchmark. An EnergyTrace log consits of a series
- of measurements. Each measurement has a timestamp, mean current, voltage,
- and cumulative energy since start of measurement. Each transition is
- preceded by a Code128 barcode embedded into the energy consumption by
- toggling a LED.
-
- Note that the baseline power draw of board and peripherals is not subtracted
- at the moment.
- """
-
- def __init__(
- self,
- voltage: float,
- state_duration: int,
- transition_names: list,
- with_traces=False,
- ):
- """
- Create a new EnergyTraceLog object.
-
- :param voltage: supply voltage [V], usually 3.3 V
- :param state_duration: state duration [ms]
- :param transition_names: list of transition names in PTA transition order.
- Needed to map barcode synchronization numbers to transitions.
- """
- self.voltage = voltage
- self.state_duration = state_duration * 1e-3
- self.transition_names = transition_names
- self.with_traces = with_traces
- self.errors = list()
-
- # TODO auto-detect
- self.led_power = 10e-3
-
- # multipass/include/object/ptalog.h#startTransition
- self.module_duration = 5e-3
-
- # multipass/include/object/ptalog.h#startTransition
- self.quiet_zone_duration = 60e-3
-
- # TODO auto-detect?
- # Note that we consider barcode duration after start, so only the
- # quiet zone -after- the code is relevant
- self.min_barcode_duration = 57 * self.module_duration + self.quiet_zone_duration
- self.max_barcode_duration = 68 * self.module_duration + self.quiet_zone_duration
-
- def load_data(self, log_data):
- """
- Load log data (raw energytrace .txt file, one line per event).
-
- :param log_data: raw energytrace log file in 4-column .txt format
- """
-
- if not zbar_available:
- logger.error("zbar module is not available")
- self.errors.append(
- 'zbar module is not available. Try "apt install python3-zbar"'
- )
- return list()
-
- lines = log_data.decode("ascii").split("\n")
- data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
- data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)
-
- data = np.empty((data_count, 4))
-
- for i, line in enumerate(data_lines):
- fields = line.split(" ")
- if len(fields) == 4:
- timestamp, current, voltage, total_energy = map(int, fields)
- elif len(fields) == 5:
- # cpustate = fields[0]
- timestamp, current, voltage, total_energy = map(int, fields[1:])
- else:
- raise RuntimeError('cannot parse line "{}"'.format(line))
- data[i] = [timestamp, current, voltage, total_energy]
-
- self.interval_start_timestamp = data[:-1, 0] * 1e-6
- self.interval_duration = (data[1:, 0] - data[:-1, 0]) * 1e-6
- self.interval_power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
- (data[1:, 0] - data[:-1, 0]) * 1e-6
- )
-
- m_duration_us = data[-1, 0] - data[0, 0]
-
- self.sample_rate = data_count / (m_duration_us * 1e-6)
-
- logger.debug(
- "got {} samples with {} seconds of log data ({} Hz)".format(
- data_count, m_duration_us * 1e-6, self.sample_rate
- )
- )
-
- return (
- self.interval_start_timestamp,
- self.interval_duration,
- self.interval_power,
- )
-
- def ts_to_index(self, timestamp):
- """
- Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.
-
- Returns the index of the interval which timestamp is part of.
- """
- return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))
-
- def _ts_to_index(self, timestamp, left_index, right_index):
- if left_index == right_index:
- return left_index
- if left_index + 1 == right_index:
- return left_index
-
- mid_index = left_index + (right_index - left_index) // 2
-
- # I'm feeling lucky
- if (
- timestamp > self.interval_start_timestamp[mid_index]
- and timestamp
- <= self.interval_start_timestamp[mid_index]
- + self.interval_duration[mid_index]
- ):
- return mid_index
-
- if timestamp <= self.interval_start_timestamp[mid_index]:
- return self._ts_to_index(timestamp, left_index, mid_index)
-
- return self._ts_to_index(timestamp, mid_index, right_index)
-
- def analyze_states(self, traces, offline_index: int):
- u"""
- Split log data into states and transitions and return duration, energy, and mean power for each element.
-
- :param traces: expected traces, needed to synchronize with the measurement.
- traces is a list of runs, traces[*]['trace'] is a single run
- (i.e. a list of states and transitions, starting with a transition
- and ending with a state).
- :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
-
- :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
- :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
- :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
-
- :returns: maybe returns list of states and transitions, both starting andending with a state.
- Each element is a dict containing:
- * `isa`: 'state' or 'transition'
- * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
- * `raw_mean`: Mittelwert der Rohwerte
- * `raw_std`: Standardabweichung der Rohwerte
- * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
- * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
- * `us`: Dauer
- if isa == 'transition, it also contains:
- * `timeout`: Dauer des vorherigen Zustands
- * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
- * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
- """
-
- first_sync = self.find_first_sync()
-
- energy_trace = list()
-
- expected_transitions = list()
- for trace_number, trace in enumerate(traces):
- for state_or_transition_number, state_or_transition in enumerate(
- trace["trace"]
- ):
- if state_or_transition["isa"] == "transition":
- try:
- expected_transitions.append(
- (
- state_or_transition["name"],
- state_or_transition["online_aggregates"]["duration"][
- offline_index
- ]
- * 1e-6,
- )
- )
- except IndexError:
- self.errors.append(
- 'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
- state_or_transition_number,
- state_or_transition["name"],
- trace_number,
- offline_index,
- )
- )
- return energy_trace
-
- next_barcode = first_sync
-
- for name, duration in expected_transitions:
- bc, start, stop, end = self.find_barcode(next_barcode)
- if bc is None:
- logger.error('did not find transition "{}"'.format(name))
- break
- next_barcode = end + self.state_duration + duration
- logger.debug(
- '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
- offline_index, bc, start, stop, end
- )
- )
- if bc != name:
- logger.error('mismatch: expected "{}", got "{}"'.format(name, bc))
- logger.debug(
- "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
- offline_index, end, end + duration
- )
- )
-
- transition_start_index = self.ts_to_index(end)
- transition_done_index = self.ts_to_index(end + duration) + 1
- state_start_index = transition_done_index
- state_done_index = (
- self.ts_to_index(end + duration + self.state_duration) + 1
- )
-
- logger.debug(
- "{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format(
- offline_index,
- transition_start_index / self.sample_rate,
- transition_done_index / self.sample_rate,
- )
- )
-
- transition_power_W = self.interval_power[
- transition_start_index:transition_done_index
- ]
-
- transition = {
- "isa": "transition",
- "W_mean": np.mean(transition_power_W),
- "W_std": np.std(transition_power_W),
- "s": duration,
- "s_coarse": self.interval_start_timestamp[transition_done_index]
- - self.interval_start_timestamp[transition_start_index],
- }
-
- if self.with_traces:
- transition["uW"] = transition_power_W * 1e6
-
- energy_trace.append(transition)
-
- if len(energy_trace) > 1:
- energy_trace[-1]["W_mean_delta_prev"] = (
- energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
- )
-
- state_power_W = self.interval_power[state_start_index:state_done_index]
- state = {
- "isa": "state",
- "W_mean": np.mean(state_power_W),
- "W_std": np.std(state_power_W),
- "s": self.state_duration,
- "s_coarse": self.interval_start_timestamp[state_done_index]
- - self.interval_start_timestamp[state_start_index],
- }
-
- if self.with_traces:
- state["uW"] = state_power_W * 1e6
-
- energy_trace.append(state)
-
- energy_trace[-2]["W_mean_delta_next"] = (
- energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
- )
-
- expected_transition_count = len(expected_transitions)
- recovered_transition_ount = len(energy_trace) // 2
-
- if expected_transition_count != recovered_transition_ount:
- self.errors.append(
- "Expected {:d} transitions, got {:d}".format(
- expected_transition_count, recovered_transition_ount
- )
- )
-
- return energy_trace
-
- def find_first_sync(self):
- # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
- sync_threshold_power = (
- np.median(self.interval_power[: int(3 * self.sample_rate)])
- + self.led_power / 3
- )
- for i, ts in enumerate(self.interval_start_timestamp):
- if ts > 2 and self.interval_power[i] > sync_threshold_power:
- return self.interval_start_timestamp[i - 300]
- return None
-
- def find_barcode(self, start_ts):
- """
- Return absolute position and content of the next barcode following `start_ts`.
-
- :param interval_ts: list of start timestamps (one per measurement interval) [s]
- :param interval_power: mean power per measurement interval [W]
- :param start_ts: timestamp at which to start looking for a barcode [s]
- """
-
- for i, ts in enumerate(self.interval_start_timestamp):
- if ts >= start_ts:
- start_position = i
- break
-
- # Lookaround: 100 ms in both directions
- lookaround = int(0.1 * self.sample_rate)
-
- # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
- sync_threshold_power = (
- np.median(
- self.interval_power[
- start_position - lookaround : start_position + lookaround
- ]
- )
- + self.led_power / 3
- )
-
- logger.debug(
- "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
- start_ts, sync_threshold_power * 1e3
- )
- )
-
- sync_area_start = None
- sync_start_ts = None
- sync_area_end = None
- sync_end_ts = None
- for i, ts in enumerate(self.interval_start_timestamp):
- if (
- sync_area_start is None
- and ts >= start_ts
- and self.interval_power[i] > sync_threshold_power
- ):
- sync_area_start = i - 300
- sync_start_ts = ts
- if (
- sync_area_start is not None
- and sync_area_end is None
- and ts > sync_start_ts + self.min_barcode_duration
- and (
- ts > sync_start_ts + self.max_barcode_duration
- or abs(sync_threshold_power - self.interval_power[i])
- > self.led_power
- )
- ):
- sync_area_end = i
- sync_end_ts = ts
- break
-
- barcode_data = self.interval_power[sync_area_start:sync_area_end]
-
- logger.debug(
- "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
- sync_start_ts, sync_end_ts, len(barcode_data)
- )
- )
-
- bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)
-
- if bc is None:
- return None, None, None, None
-
- start_ts = self.interval_start_timestamp[sync_area_start + start]
- stop_ts = self.interval_start_timestamp[sync_area_start + stop]
-
- end_ts = (
- stop_ts + self.module_duration * padding_bits + self.quiet_zone_duration
- )
-
- # barcode content, barcode start timestamp, barcode stop timestamp, barcode end (stop + padding) timestamp
- return bc, start_ts, stop_ts, end_ts
-
- def find_barcode_in_power_data(self, barcode_data):
-
- min_power = np.min(barcode_data)
- max_power = np.max(barcode_data)
-
- # zbar seems to be confused by measurement (and thus image) noise
- # inside of barcodes. As our barcodes are only 1px high, this is
- # likely not trivial to fix.
- # -> Create a black and white (not grayscale) image to avoid this.
- # Unfortunately, this decreases resilience against background noise
- # (e.g. a not-exactly-idle peripheral device or CPU interrupts).
- image_data = np.around(
- 1 - ((barcode_data - min_power) / (max_power - min_power))
- )
- image_data *= 255
-
- # zbar only returns the complete barcode position if it is at least
- # two pixels high. For a 1px barcode, it only returns its right border.
-
- width = len(image_data)
- height = 2
-
- image_data = bytes(map(int, image_data)) * height
-
- # img = Image.frombytes('L', (width, height), image_data).resize((width, 100))
- # img.save('/tmp/test-{}.png'.format(os.getpid()))
-
- zbimg = zbar.Image(width, height, "Y800", image_data)
- scanner = zbar.ImageScanner()
- scanner.parse_config("enable")
-
- if scanner.scan(zbimg):
- (sym,) = zbimg.symbols
- content = sym.data
- try:
- sym_start = sym.location[1][0]
- except IndexError:
- sym_start = 0
- sym_end = sym.location[0][0]
-
- match = re.fullmatch(r"T(\d+)", content)
- if match:
- content = self.transition_names[int(match.group(1))]
-
- # PTALog barcode generation operates on bytes, so there may be
- # additional non-barcode padding (encoded as LED off / image white).
- # Calculate the amount of extra bits to determine the offset until
- # the transition starts.
- padding_bits = len(Code128(sym.data, charset="B").modules) % 8
-
- # sym_start leaves out the first two bars, but we don't do anything about that here
- # sym_end leaves out the last three bars, each of which is one padding bit long.
- # as a workaround, we unconditionally increment padding_bits by three.
- padding_bits += 3
-
- return content, sym_start, sym_end, padding_bits
- else:
- logger.warning("unable to find barcode")
- return None, None, None, None
-
-
-class MIMOSA:
- """
- MIMOSA log loader for DFA traces with auto-calibration.
-
- Expects a MIMOSA log file generated via dfatool and a dfatool-generated
- benchmark. A MIMOSA log consists of a series of measurements. Each measurement
- gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval.
-
- There must be a calibration run consisting of at least two seconds with disconnected DUT,
- two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at
- the start. The first ten seconds of data are reserved for calbiration and must not contain
- measurements, as trigger/buzzer signals are ignored in this time range.
-
- Resulting data is a list of state/transition/state/transition/... measurements.
- """
-
- def __init__(self, voltage: float, shunt: int, with_traces=False):
- """
- Initialize MIMOSA loader for a specific voltage and shunt setting.
-
- :param voltage: MIMOSA DUT supply voltage (V)
- :para mshunt: MIMOSA Shunt (Ohms)
- """
- self.voltage = voltage
- self.shunt = shunt
- self.with_traces = with_traces
- self.r1 = 984 # "1k"
- self.r2 = 99013 # "100k"
- self.errors = list()
-
- def charge_to_current_nocal(self, charge):
- u"""
- Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.
-
- :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`
-
- :returns: numpy array of mean currents (µA per 10µs)
- """
- ua_max = 1.836 / self.shunt * 1000000
- ua_step = ua_max / 65535
- return charge * ua_step
-
- def _load_tf(self, tf):
- u"""
- Load MIMOSA log data from an open `tarfile` instance.
-
- :param tf: `tarfile` instance
-
- :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
- """
- num_bytes = tf.getmember("/tmp/mimosa//mimosa_scale_1.tmp").size
- charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
- triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
- with tf.extractfile("/tmp/mimosa//mimosa_scale_1.tmp") as f:
- content = f.read()
- iterator = struct.iter_unpack("<I", content)
- i = 0
- for word in iterator:
- charges[i] = word[0] >> 4
- triggers[i] = (word[0] & 0x08) >> 3
- i += 1
- return charges, triggers
-
- def load_data(self, raw_data):
- u"""
- Load MIMOSA log data from a MIMOSA log file passed as raw byte string
-
- :param raw_data: MIMOSA log file, passed as raw byte string
-
- :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
- """
- with io.BytesIO(raw_data) as data_object:
- with tarfile.open(fileobj=data_object) as tf:
- return self._load_tf(tf)
-
- def load_file(self, filename):
- u"""
- Load MIMOSA log data from a MIMOSA log file
-
- :param filename: MIMOSA log file
-
- :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
- """
- with tarfile.open(filename) as tf:
- return self._load_tf(tf)
-
- def currents_nocal(self, charges):
- u"""
- Convert charges (pJ per 10µs) to mean currents without accounting for calibration.
-
- :param charges: numpy array of charges (pJ per 10µs)
-
- :returns: numpy array of currents (mean µA per 10µs)"""
- ua_max = 1.836 / self.shunt * 1000000
- ua_step = ua_max / 65535
- return charges.astype(np.double) * ua_step
-
- def trigger_edges(self, triggers):
- """
- Return indexes of trigger edges (both 0->1 and 1->0) in log data.
-
- Ignores the first 10 seconds, which are used for calibration and may
- contain bogus triggers due to DUT resets.
-
- :param triggers: trigger array (int, 0/1) as returned by load_data
-
- :returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps)
- """
- trigidx = []
-
- if len(triggers) < 1000000:
- self.errors.append("MIMOSA log is too short")
- return trigidx
-
- prevtrig = triggers[999999]
-
- # if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts),
- # something went wrong and are unable to determine when the first
- # transition starts.
- if prevtrig != 0:
- self.errors.append(
- "Unable to find start of first transition (log starts with trigger == {} != 0)".format(
- prevtrig
- )
- )
-
- # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
- # it terminated in the middle of a transition -- meaning that it was not
- # measured in its entirety.
- if triggers[-1] != 0:
- self.errors.append("Log ends during a transition".format(prevtrig))
-
- # the device is reset for MIMOSA calibration in the first 10s and may
- # send bogus interrupts -> bogus triggers
- for i in range(1000000, triggers.shape[0]):
- trig = triggers[i]
- if trig != prevtrig:
- # Due to MIMOSA's integrate-read-reset cycle, the charge/current
- # interval belonging to this trigger comes two intervals (20µs) later
- trigidx.append(i + 2)
- prevtrig = trig
- return trigidx
-
- def calibration_edges(self, currents):
- u"""
- Return start/stop indexes of calibration measurements.
-
- :param currents: uncalibrated currents as reported by MIMOSA. For best results,
- it may help to use a running mean, like so:
- `currents = running_mean(currents_nocal(..., 10))`
-
- :returns: indices of calibration events in MIMOSA data:
- (disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop)
- indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on.
- """
- r1idx = 0
- r2idx = 0
- ua_r1 = self.voltage / self.r1 * 1000000
- # first second may be bogus
- for i in range(100000, len(currents)):
- if r1idx == 0 and currents[i] > ua_r1 * 0.6:
- r1idx = i
- elif (
- r1idx != 0
- and r2idx == 0
- and i > (r1idx + 180000)
- and currents[i] < ua_r1 * 0.4
- ):
- r2idx = i
- # 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
- # allow 5ms buffer in both directions to account for bouncing relais contacts
- return (
- r1idx - 180500,
- r1idx - 500,
- r1idx + 500,
- r2idx - 500,
- r2idx + 500,
- r2idx + 180500,
- )
-
- def calibration_function(self, charges, cal_edges):
- u"""
- Calculate calibration function from previously determined calibration edges.
-
- :param charges: raw charges from MIMOSA
- :param cal_edges: calibration edges as returned by calibration_edges
-
- :returns: (calibration_function, calibration_data):
- calibration_function -- charge in pJ (float) -> current in uA (float).
- Converts the amount of charge in a 10 µs interval to the
- mean current during the same interval.
- calibration_data -- dict containing the following keys:
- edges -- calibration points in the log file, in µs
- offset -- ...
- offset2 -- ...
- slope_low -- ...
- slope_high -- ...
- add_low -- ...
- add_high -- ..
- r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
- r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
- r1_err_uW -- mean error of uncalibrated data at 1 kOhm
- r1_std_uW -- stddev at 1 kOhm
- r2_err_uW -- mean error at 100 kOhm
- r2_std_uW -- stddev at 100 kOhm
- """
- dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
- if dis_start < 0:
- dis_start = 0
- chg_r0 = charges[dis_start:dis_end]
- chg_r1 = charges[r1_start:r1_end]
- chg_r2 = charges[r2_start:r2_end]
- cal_0_mean = np.mean(chg_r0)
- cal_r1_mean = np.mean(chg_r1)
- cal_r2_mean = np.mean(chg_r2)
-
- ua_r1 = self.voltage / self.r1 * 1000000
- ua_r2 = self.voltage / self.r2 * 1000000
-
- if cal_r2_mean > cal_0_mean:
- b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
- else:
- logger.warning("0 uA == %.f uA during calibration" % (ua_r2))
- b_lower = 0
-
- b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
-
- a_lower = -b_lower * cal_0_mean
- a_upper = -b_upper * cal_r2_mean
-
- if self.shunt == 680:
- # R1 current is higher than shunt range -> only use R2 for calibration
- def calfunc(charge):
- if charge < cal_0_mean:
- return 0
- else:
- return charge * b_lower + a_lower
-
- else:
-
- def calfunc(charge):
- if charge < cal_0_mean:
- return 0
- if charge <= cal_r2_mean:
- return charge * b_lower + a_lower
- else:
- return charge * b_upper + a_upper + ua_r2
-
- caldata = {
- "edges": [x * 10 for x in cal_edges],
- "offset": cal_0_mean,
- "offset2": cal_r2_mean,
- "slope_low": b_lower,
- "slope_high": b_upper,
- "add_low": a_lower,
- "add_high": a_upper,
- "r0_err_uW": np.mean(self.currents_nocal(chg_r0)) * self.voltage,
- "r0_std_uW": np.std(self.currents_nocal(chg_r0)) * self.voltage,
- "r1_err_uW": (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
- "r1_std_uW": np.std(self.currents_nocal(chg_r1)) * self.voltage,
- "r2_err_uW": (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
- "r2_std_uW": np.std(self.currents_nocal(chg_r2)) * self.voltage,
- }
-
- # print("if charge < %f : return 0" % cal_0_mean)
- # print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
- # print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
-
- return calfunc, caldata
-
- """
- def calcgrad(self, currents, threshold):
- grad = np.gradient(running_mean(currents * self.voltage, 10))
- # len(grad) == len(currents) - 9
- subst = []
- lastgrad = 0
- for i in range(len(grad)):
- # minimum substate duration: 10ms
- if np.abs(grad[i]) > threshold and i - lastgrad > 50:
- # account for skew introduced by running_mean and current
- # ramp slope (parasitic capacitors etc.)
- subst.append(i+10)
- lastgrad = i
- if lastgrad != i:
- subst.append(i+10)
- return subst
-
- # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
- # Sache nach noetiger threshold. postprocessing mit
- # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
- # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
- # TODO bei substates / index foo den offset durch running_mean beachten
- # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
- # uebergaenge dadurch?
- def gradfoo(self, currents):
- gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
- gradmin = np.min(gradients)
- gradmax = np.max(gradients)
- threshold = np.mean([gradmin, gradmax])
- gradidx = self.calcgrad(currents, threshold)
- num_substates = 2
- while len(gradidx) != num_substates:
- if gradmax - gradmin < 0.1:
- # We did our best
- return threshold, gradidx
- if len(gradidx) > num_substates:
- gradmin = threshold
- else:
- gradmax = threshold
- threshold = np.mean([gradmin, gradmax])
- gradidx = self.calcgrad(currents, threshold)
- return threshold, gradidx
- """
-
- def analyze_states(self, charges, trigidx, ua_func):
- u"""
- Split log data into states and transitions and return duration, energy, and mean power for each element.
-
- :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
- :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
- :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
-
- :returns: list of states and transitions, both starting andending with a state.
- Each element is a dict containing:
- * `isa`: 'state' or 'transition'
- * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
- * `raw_mean`: Mittelwert der Rohwerte
- * `raw_std`: Standardabweichung der Rohwerte
- * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
- * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
- * `us`: Dauer
- if isa == 'transition, it also contains:
- * `timeout`: Dauer des vorherigen Zustands
- * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
- * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
- """
- previdx = 0
- is_state = True
- iterdata = []
-
- # The last state (between the last transition and end of file) may also
- # be important. Pretend it ends when the log ends.
- trigger_indices = trigidx.copy()
- trigger_indices.append(len(charges))
-
- for idx in trigger_indices:
- range_raw = charges[previdx:idx]
- range_ua = ua_func(range_raw)
- substates = {}
-
- if previdx != 0 and idx - previdx > 200:
- thr, subst = 0, [] # self.gradfoo(range_ua)
- if len(subst):
- statelist = []
- prevsubidx = 0
- for subidx in subst:
- statelist.append(
- {
- "duration": (subidx - prevsubidx) * 10,
- "uW_mean": np.mean(
- range_ua[prevsubidx:subidx] * self.voltage
- ),
- "uW_std": np.std(
- range_ua[prevsubidx:subidx] * self.voltage
- ),
- }
- )
- prevsubidx = subidx
- substates = {"threshold": thr, "states": statelist}
-
- isa = "state"
- if not is_state:
- isa = "transition"
-
- data = {
- "isa": isa,
- "clip_rate": np.mean(range_raw == 65535),
- "raw_mean": np.mean(range_raw),
- "raw_std": np.std(range_raw),
- "uW_mean": np.mean(range_ua * self.voltage),
- "uW_std": np.std(range_ua * self.voltage),
- "us": (idx - previdx) * 10,
- }
-
- if self.with_traces:
- data["uW"] = range_ua * self.voltage
-
- if "states" in substates:
- data["substates"] = substates
- ssum = np.sum(list(map(lambda x: x["duration"], substates["states"])))
- if ssum != data["us"]:
- logger.warning("duration %d vs %d" % (data["us"], ssum))
-
- if isa == "transition":
- # subtract average power of previous state
- # (that is, the state from which this transition originates)
- data["uW_mean_delta_prev"] = data["uW_mean"] - iterdata[-1]["uW_mean"]
- # placeholder to avoid extra cases in the analysis
- data["uW_mean_delta_next"] = data["uW_mean"]
- data["timeout"] = iterdata[-1]["us"]
- elif len(iterdata) > 0:
- # subtract average power of next state
- # (the state into which this transition leads)
- iterdata[-1]["uW_mean_delta_next"] = (
- iterdata[-1]["uW_mean"] - data["uW_mean"]
- )
-
- iterdata.append(data)
-
- previdx = idx
- is_state = not is_state
- return iterdata