summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py58
1 files changed, 46 insertions, 12 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 616e6fd..ac0885b 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -15,7 +15,7 @@ from multiprocessing import Pool
from automata import PTA
from functions import analytic
from functions import AnalyticFunction
-from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple
+from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple, is_power_of_two, distinct_param_values
arg_support_enabled = True
@@ -430,6 +430,48 @@ class ParamStats:
"""
return 1 - self._generic_param_independence_ratio(state_or_trans, attribute)
+ def _reduce_param_matrix(self, matrix: np.ndarray, parameter_names: list) -> list:
+ """
+ :param matrix: parameter dependence matrix, M[(...)] == 1 iff (model attribute) is influenced by (parameter) for other parameter value indxe == (...)
+ :param parameter_names: names of parameters in the order in which they appear in the matrix index. The first entry corresponds to the first axis, etc.
+ :returns: parameters which determine whether (parameter) has an effect on (model attribute). If a parameter is not part of this list, its value does not
+ affect (parameter)'s influence on (model attribute) -- it either always or never has an influence
+ """
+ if np.all(matrix == True) or np.all(matrix == False):
+ return list()
+
+ if not is_power_of_two(np.count_nonzero(matrix)):
+ # cannot be reliably reduced to a list of parameters
+ return list()
+
+ if np.count_nonzero(matrix) == 1:
+ influential_parameters = list()
+ for i, parameter_name in enumerate(parameter_names):
+ if matrix.shape[i] > 1:
+ influential_parameters.append(parameter_name)
+ return influential_parameters
+
+ for axis in range(matrix.ndim):
+ candidate = self._reduce_param_matrix(np.all(matrix, axis=axis), remove_index_from_tuple(parameter_names, axis))
+ if len(candidate):
+ return candidate
+
+ return list()
+
+ def _get_codependent_parameters(self, stats, param):
+ """
+ Return list of parameters which affect whether `param` influences the model attribute described in `stats` or not.
+ """
+ safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
+ ratio_by_value = safe_div(stats['lut_by_param_values'][param], stats['std_by_param_values'][param])
+ err_mode = np.seterr('ignore')
+ dep_by_value = ratio_by_value > 0.5
+ np.seterr(**err_mode)
+
+ other_param_list = list(filter(lambda x: x != param, self._parameter_names))
+ influencer_parameters = self._reduce_param_matrix(dep_by_value, other_param_list)
+ return influencer_parameters
+
def _param_independence_ratio(self, state_or_trans, attribute, param):
"""
Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param.
@@ -446,17 +488,9 @@ class ParamStats:
# This means that the variation of param does not affect the model quality -> no influence, return 1
return 1.
- safe_div = np.vectorize(lambda x,y: 1. if x == 0 else x/y)
- std_by_value = safe_div(statistics['lut_by_param_values'][param], statistics['std_by_param_values'][param])
-
- i = 0
- for other_param in self._parameter_names:
- if param != other_param and not np.any(np.isnan(std_by_value)) and std_by_value.shape[i] > 1:
- dep1 = np.all(std_by_value < 0.5, axis=i)
- dep2 = np.all(std_by_value >= 0.5, axis=i)
- if np.any(dep1 | dep2 == False):
- print('possible correlation {}/{} {} <-> {}'.format(state_or_trans, attribute, param, other_param))
- i += 1
+ influencer_parameters = self._get_codependent_parameters(statistics, param)
+ if len(influencer_parameters):
+ print('{}/{} {} <-> {}'.format(state_or_trans, attribute, param, influencer_parameters))
return statistics['std_param_lut'] / statistics['std_by_param'][param]