summaryrefslogtreecommitdiff
path: root/lib/dfatool.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/dfatool.py')
-rwxr-xr-xlib/dfatool.py138
1 files changed, 135 insertions, 3 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index aaf44bf..e39f58f 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -367,11 +367,83 @@ class ParamFunction:
def error_function(self, P, X, y):
return self._param_function(P, X) - y
+class AnalyticFunction:
+
+ def __init__(self, function_str, num_vars, parameters):
+ self._parameter_names = parameters
+ self._model_str = function_str
+ rawfunction = function_str
+ self._dependson = [False] * len(parameters)
+
+ for i in range(len(parameters)):
+ if rawfunction.find('parameter({})'.format(parameters[i])) >= 0:
+ self._dependson[i] = True
+ rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'arg[{:d}]'.format(i))
+ if rawfunction.find('function_arg({})'.format(parameters[i])) >= 0:
+ self._dependson[i] = True
+ rawfunction = rawfunction.replace('function_arg({})'.format(parameters[i]), 'arg[{:d}]'.format(i))
+ for i in range(num_vars):
+ rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'param[{:d}]'.format(i))
+ self._function_str = rawfunction
+ self._function = eval('lambda param, arg: ' + rawfunction);
+ self._regression_args = list(np.ones((num_vars)))
+
+ def _get_fit_data(self, by_param, state_or_tran, model_attribute):
+ X = [[] for i in range(len(self._parameter_names))]
+ Y = []
+
+ num_valid = 0
+ num_total = 0
+
+ for key, val in by_param.items():
+ if key[0] == state_or_tran and len(key[1]) == len(self._parameter_names):
+ valid = True
+ num_total += 1
+ for i in range(len(self._parameter_names)):
+ if self._dependson[i] and not is_numeric(key[1][i]):
+ valid = False
+ if valid:
+ num_valid += 1
+ Y.extend(val[model_attribute])
+ for i in range(len(self._parameter_names)):
+ if self._dependson[i]:
+ X[i].extend([float(key[1][i])] * len(val[model_attribute]))
+ else:
+ X[i].extend([np.nan] * len(val[model_attribute]))
+ for i in range(len(self._parameter_names)):
+ X[i] = np.array(X[i])
+ Y = np.array(Y)
+
+ return X, Y, num_valid, num_total
+
+ def fit(self, by_param, state_or_tran, model_attribute):
+ X, Y, num_valid, num_total = self._get_fit_data(by_param, state_or_tran, model_attribute)
+ if num_valid > 2:
+ error_function = lambda P, X, y: self._function(P, X) - y
+ try:
+ res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15)
+ except ValueError as err:
+ return
+ self._regression_args = res.x
+
class analytic:
_num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
+ _function_map = {
+ 'linear' : lambda x: x,
+ 'logarithmic' : np.log,
+ 'logarithmic1' : lambda x: np.log(x + 1),
+ 'exponential' : np.exp,
+ 'square' : lambda x : x ** 2,
+ 'fractional' : lambda x : 1 / x,
+ 'sqrt' : np.sqrt,
+ 'num0_8' : _num0_8,
+ 'num0_16' : _num0_16,
+ 'num1' : _num1,
+ }
+
def functions():
functions = {
'linear' : ParamFunction(
@@ -429,6 +501,47 @@ class analytic:
return functions
+ def _fmap(reference_type, reference_name, function_type):
+ ref_str = '{}({})'.format(reference_type,reference_name)
+ if function_type == 'linear':
+ return ref_str
+ if function_type == 'logarithmic':
+ return 'np.log({})'.format(ref_str)
+ if function_type == 'logarithmic1':
+ return 'np.log({} + 1)'.format(ref_str)
+ if function_type == 'exponential':
+ return 'np.exp({})'.format(ref_str)
+ if function_type == 'exponential':
+ return 'np.exp({})'.format(ref_str)
+ if function_type == 'square':
+ return '({})**2'.format(ref_str)
+ if function_type == 'fractional':
+ return '1/({})'.format(ref_str)
+ if function_type == 'sqrt':
+ return 'np.sqrt({})'.format(ref_str)
+ return 'analytic._{}({})'.format(function_type, ref_str)
+
+ def function_powerset(function_descriptions, parameter_names):
+ buf = '0'
+ arg_idx = 0
+ for combination in powerset(function_descriptions.items()):
+ buf += ' + regression_arg({:d})'.format(arg_idx)
+ arg_idx += 1
+ for function_item in combination:
+ buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best']))
+ return AnalyticFunction(buf, arg_idx, parameter_names)
+
+ #def function_powerset(function_descriptions):
+ # function_buffer = lambda param, arg: 0
+ # param_idx = 0
+ # for combination in powerset(function_descriptions):
+ # new_function = lambda param, arg: param[param_idx]
+ # param_idx += 1
+ # for function_name in combination:
+ # new_function = lambda param, arg: new_function(param, arg) * analytic._function_map[function_name](arg)
+ # new_function = lambda param, arg: param[param_idx] *
+ # function_buffer = lambda param, arg: function_buffer(param, arg) +
+
class EnergyModel:
def __init__(self, preprocessed_data):
@@ -629,17 +742,36 @@ class EnergyModel:
static_model = self._get_model_from_dict(self.by_name, np.median)
def get_fitted(self):
+ static_model = self._get_model_from_dict(self.by_name, np.mean)
+ param_model = dict([[state_or_tran, {}] for state_or_tran in self.by_name.keys()])
for state_or_tran in self.by_name.keys():
if self.by_name[state_or_tran]['isa'] == 'state':
attributes = ['power']
else:
attributes = ['energy', 'duration', 'timeout', 'rel_energy_prev', 'rel_energy_next']
for model_attribute in attributes:
+ fit_results = {}
for parameter_index, parameter_name in enumerate(self._parameter_names):
if self.param_dependence_ratio(state_or_tran, model_attribute, parameter_name) > 0.5:
- fit_results = self._try_fits(state_or_tran, model_attribute, parameter_index)
- print('{} is {}'.format(parameter_name, fit_results['best']))
- pass
+ fit_results[parameter_name] = self._try_fits(state_or_tran, model_attribute, parameter_index)
+ #print('{} {} is {}'.format(state_or_tran, parameter_name, fit_results[parameter_name]['best']))
+ if len(fit_results.keys()):
+ x = analytic.function_powerset(fit_results, self._parameter_names)
+ x.fit(self.by_param, state_or_tran, model_attribute)
+ param_model[state_or_tran][model_attribute] = {
+ 'fit_result': fit_results,
+ 'function' : x
+ }
+
+ def model_getter(name, key, **kwargs):
+ return static_model[name][key]
+
+ def info_getter(name, key):
+ if key in param_model[name]:
+ return param_model[name][key]
+ return None
+
+ return model_getter, info_getter
def states(self):