summaryrefslogtreecommitdiff
path: root/lib/functions.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/functions.py')
-rw-r--r--lib/functions.py246
1 files changed, 236 insertions, 10 deletions
diff --git a/lib/functions.py b/lib/functions.py
index d0ef7e2..501970e 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -590,7 +590,7 @@ class SKLearnRegressionFunction(ModelFunction):
always_predictable = True
has_eval_arr = True
- def __init__(self, value, regressor, categorical_to_index, ignore_index, **kwargs):
+ def __init__(self, value, **kwargs):
# Needed for JSON export
self.param_names = kwargs.pop("param_names")
self.arg_count = kwargs.pop("arg_count")
@@ -600,10 +600,12 @@ class SKLearnRegressionFunction(ModelFunction):
super().__init__(value, **kwargs)
- self.regressor = regressor
- self.categorical_to_index = categorical_to_index
- self.ignore_index = ignore_index
+ self.categorical_to_scalar = bool(
+ int(os.getenv("DFATOOL_PARAM_CATEGORICAL_TO_SCALAR", "0"))
+ )
+ self.fit_success = None
+ def _build_feature_names(self):
# SKLearnRegressionFunction descendants use self.param_names \ self.ignore_index as features.
# Thus, model feature indexes ≠ self.param_names indexes.
# self.feature_names accounts for this and allows mapping feature indexes back to parameter names / parameter indexes.
@@ -629,13 +631,11 @@ class SKLearnRegressionFunction(ModelFunction):
)
)
- def is_predictable(self, param_list=None):
- """
- Return whether the model function can be evaluated on the given parameter values.
+ def fit(self, param_values, data, ignore_param_indexes=None):
+ raise NotImplementedError
- For a StaticFunction, this is always the case (i.e., this function always returns true).
- """
- return True
+ def is_predictable(self, param_list=None):
+ return self.fit_success
def eval(self, param_list=None):
"""
@@ -714,6 +714,52 @@ class SKLearnRegressionFunction(ModelFunction):
class CARTFunction(SKLearnRegressionFunction):
+ def __init__(self, value, decart=False, **kwargs):
+ self.decart = decart
+ super().__init__(value, **kwargs)
+
+ def fit(self, param_values, data, scalar_param_indexes=None):
+
+ max_depth = int(os.getenv("DFATOOL_CART_MAX_DEPTH", "0"))
+ if max_depth == 0:
+ max_depth = None
+
+ if self.decart:
+ fit_parameters, self.categorical_to_index, self.ignore_index = (
+ param_to_ndarray(
+ param_values,
+ with_nan=False,
+ categorical_to_scalar=self.categorical_to_scalar,
+ ignore_indexes=scalar_param_indexes,
+ )
+ )
+ else:
+ fit_parameters, self.categorical_to_index, self.ignore_index = (
+ param_to_ndarray(
+ param_values,
+ with_nan=False,
+ categorical_to_scalar=self.categorical_to_scalar,
+ )
+ )
+
+ if fit_parameters.shape[1] == 0:
+ logger.warning(
+ f"Cannot generate CART due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
+ )
+ self.fit_success = False
+ return self
+
+ logger.debug("Fitting sklearn CART ...")
+ from sklearn.tree import DecisionTreeRegressor
+
+ self.regressor = DecisionTreeRegressor(max_depth=max_depth)
+ self.regressor.fit(fit_parameters, data)
+ logger.debug("Fitted sklearn CART")
+
+ self.fit_success = True
+ self._build_feature_names()
+ return self
+
def get_number_of_nodes(self):
return self.regressor.tree_.node_count
@@ -800,6 +846,91 @@ class CARTFunction(SKLearnRegressionFunction):
class LMTFunction(SKLearnRegressionFunction):
+
+ def fit(self, param_values, data):
+ # max_depth : int, default=5
+ # The maximum depth of the tree considering only the splitting nodes.
+ # A higher value implies a higher training time.
+ max_depth = int(os.getenv("DFATOOL_LMT_MAX_DEPTH", "5"))
+
+ # min_samples_split : int or float, default=6
+ # The minimum number of samples required to split an internal node.
+ # The minimum valid number of samples in each node is 6.
+ # A lower value implies a higher training time.
+ # - If int, then consider `min_samples_split` as the minimum number.
+ # - If float, then `min_samples_split` is a fraction and
+ # `ceil(min_samples_split * n_samples)` are the minimum
+ # number of samples for each split.
+ if "." in os.getenv("DFATOOL_LMT_MIN_SAMPLES_SPLIT", ""):
+ min_samples_split = float(os.getenv("DFATOOL_LMT_MIN_SAMPLES_SPLIT"))
+ else:
+ min_samples_split = int(os.getenv("DFATOOL_LMT_MIN_SAMPLES_SPLIT", "6"))
+
+ # min_samples_leaf : int or float, default=0.1
+ # The minimum number of samples required to be at a leaf node.
+ # A split point at any depth will only be considered if it leaves at
+ # least `min_samples_leaf` training samples in each of the left and
+ # right branches.
+ # The minimum valid number of samples in each leaf is 3.
+ # A lower value implies a higher training time.
+ # - If int, then consider `min_samples_leaf` as the minimum number.
+ # - If float, then `min_samples_leaf` is a fraction and
+ # `ceil(min_samples_leaf * n_samples)` are the minimum
+ # number of samples for each node.
+ if "." in os.getenv("DFATOOL_LMT_MIN_SAMPLES_LEAF", "0.1"):
+ min_samples_leaf = float(os.getenv("DFATOOL_LMT_MIN_SAMPLES_LEAF", "0.1"))
+ else:
+ min_samples_leaf = int(os.getenv("DFATOOL_LMT_MIN_SAMPLES_LEAF"))
+
+ # max_bins : int, default=25
+ # The maximum number of bins to use to search the optimal split in each
+ # feature. Features with a small number of unique values may use less than
+ # ``max_bins`` bins. Must be lower than 120 and larger than 10.
+ # A higher value implies a higher training time.
+ max_bins = int(os.getenv("DFATOOL_LMT_MAX_BINS", "120"))
+
+ # criterion : {"mse", "rmse", "mae", "poisson"}, default="mse"
+ # The function to measure the quality of a split. "poisson"
+ # requires ``y >= 0``.
+ criterion = os.getenv("DFATOOL_LMT_CRITERION", "mse")
+
+ from sklearn.linear_model import LinearRegression
+ from dfatool.lineartree import LinearTreeRegressor
+
+ lmt = LinearTreeRegressor(
+ base_estimator=LinearRegression(),
+ max_depth=max_depth,
+ min_samples_split=min_samples_split,
+ min_samples_leaf=min_samples_leaf,
+ max_bins=max_bins,
+ criterion=criterion,
+ )
+ fit_parameters, self.categorical_to_index, self.ignore_index = param_to_ndarray(
+ param_values,
+ with_nan=False,
+ categorical_to_scalar=self.categorical_to_scalar,
+ )
+ if fit_parameters.shape[1] == 0:
+ logger.warning(
+ f"Cannot generate LMT due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
+ )
+ self.fit_success = False
+ return self
+
+ logger.debug("Fitting LMT ...")
+ try:
+ lmt.fit(fit_parameters, data)
+ except np.linalg.LinAlgError as e:
+ logger.error(f"LMT generation failed: {e}")
+ self.fit_success = False
+ return
+ logger.debug("Fitted LMT")
+
+ self.regressor = lmt
+ self.fit_success = True
+ self._build_feature_names()
+ return self
+
def get_number_of_nodes(self):
return self.regressor.node_count
@@ -861,6 +992,101 @@ class LMTFunction(SKLearnRegressionFunction):
class XGBoostFunction(SKLearnRegressionFunction):
+
+ def fit(self, param_values, data):
+
+ # <https://xgboost.readthedocs.io/en/stable/python/python_api.html#module-xgboost.sklearn>
+ # <https://xgboost.readthedocs.io/en/stable/parameter.html#parameters-for-tree-booster>
+ # n_estimators := number of trees in forest
+ # max_depth := maximum tree depth
+ # eta <=> learning_rate
+
+ # n_estimators : Optional[int]
+ # Number of gradient boosted trees. Equivalent to number of boosting
+ # rounds.
+ # xgboost/sklearn.py: DEFAULT_N_ESTIMATORS = 100
+ n_estimators = int(os.getenv("DFATOOL_XGB_N_ESTIMATORS", "100"))
+
+ # max_depth : Optional[int] [default=6]
+ # Maximum tree depth for base learners.
+ # Maximum depth of a tree. Increasing this value will make the model more complex and more likely to overfit. 0 indicates no limit on depth. Beware
+ # that XGBoost aggressively consumes memory when training a deep tree. exact tree method requires non-zero value.
+ # range: [0,∞]
+ max_depth = int(os.getenv("DFATOOL_XGB_MAX_DEPTH", "6"))
+
+ # max_leaves : [default=0]
+ # Maximum number of leaves; 0 indicates no limit.
+ # Maximum number of nodes to be added. Not used by exact tree method.
+ max_leaves = int(os.getenv("DFATOOL_XGB_MAX_LEAVES", "0"))
+
+ # learning_rate : Optional[float] [default=0.3]
+ # Boosting learning rate (xgb's "eta")
+ # Step size shrinkage used in update to prevents overfitting. After each boosting step, we can directly get the weights of new features, and eta
+ # shrinks the feature weights to make the boosting process more conservative.
+ # range: [0,1]
+ learning_rate = float(os.getenv("DFATOOL_XGB_ETA", "0.3"))
+
+ # gamma : Optional[float] [default=0]
+ # (min_split_loss) Minimum loss reduction required to make a further partition on a
+ # leaf node of the tree.
+ # Minimum loss reduction required to make a further partition on a leaf node of the tree. The larger gamma is, the more conservative the algorithm will be.
+ # range: [0,∞]
+ gamma = float(os.getenv("DFATOOL_XGB_GAMMA", "0"))
+
+ # subsample : Optional[float] [default=1]
+ # Subsample ratio of the training instance.
+ # Subsample ratio of the training instances. Setting it to 0.5 means that XGBoost would randomly sample half of the training data prior to growing
+ # trees. and this will prevent overfitting. Subsampling will occur once in every boosting iteration.
+ # range: (0,1]
+ subsample = float(os.getenv("DFATOOL_XGB_SUBSAMPLE", "1"))
+
+ # reg_alpha : Optional[float] [default=0]
+ # L1 regularization term on weights (xgb's alpha).
+ # L1 regularization term on weights. Increasing this value will make model more conservative.
+ # range: [0, ∞]
+ reg_alpha = float(os.getenv("DFATOOL_XGB_REG_ALPHA", "0"))
+
+ # reg_lambda : Optional[float] [default=1]
+ # L2 regularization term on weights (xgb's lambda).
+ # L2 regularization term on weights. Increasing this value will make model more conservative.
+ # range: [0, ∞]
+ reg_lambda = float(os.getenv("DFATOOL_XGB_REG_LAMBDA", "1"))
+
+ fit_parameters, self.categorical_to_index, self.ignore_index = param_to_ndarray(
+ param_values,
+ with_nan=False,
+ categorical_to_scalar=self.categorical_to_scalar,
+ )
+ if fit_parameters.shape[1] == 0:
+ logger.warning(
+ f"Cannot run XGBoost due to lack of parameters: parameter shape is {np.array(param_values).shape}, fit_parameter shape is {fit_parameters.shape}"
+ )
+ self.fit_success = False
+ return self
+
+ import xgboost
+
+ xgb = xgboost.XGBRegressor(
+ n_estimators=n_estimators,
+ max_depth=max_depth,
+ max_leaves=max_leaves,
+ subsample=subsample,
+ learning_rate=learning_rate,
+ gamma=gamma,
+ reg_alpha=reg_alpha,
+ reg_lambda=reg_lambda,
+ )
+ xgb.fit(fit_parameters, np.reshape(data, (-1, 1)))
+ self.fit_success = True
+ self.regressor = xgb
+ self._build_feature_names()
+
+ if output_filename := os.getenv("DFATOOL_XGB_DUMP_MODEL", None):
+ xgb.get_booster().dump_model(
+ output_filename, dump_format="json", with_stats=True
+ )
+ return self
+
def to_json(self, internal=False, **kwargs):
import json