summaryrefslogtreecommitdiff
path: root/lib/lennart/DataProcessor.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lennart/DataProcessor.py')
-rw-r--r--lib/lennart/DataProcessor.py62
1 files changed, 33 insertions, 29 deletions
diff --git a/lib/lennart/DataProcessor.py b/lib/lennart/DataProcessor.py
index 1fea0db..589dde2 100644
--- a/lib/lennart/DataProcessor.py
+++ b/lib/lennart/DataProcessor.py
@@ -161,7 +161,7 @@ class DataProcessor:
self.sync_timestamps[4:-8] = with_drift_compensation
except ValueError:
logger.error(
- f"Iteration #{self.offline_index}: drift-compensated sequence is too short"
+ f"Iteration #{self.offline_index}: drift-compensated sequence is too short ({len(with_drift_compensation)}/{len(self.sync_timestamps[4:-8])-1})"
)
raise
@@ -240,12 +240,16 @@ class DataProcessor:
et_timestamps_start : et_timestamps_end + 1
]
candidate_weight = dict()
- if os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY"):
+ if 0:
+ penalties = (None,)
+ elif os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY"):
penalties = (int(os.getenv("DFATOOL_DRIFT_COMPENSATION_PENALTY")),)
else:
penalties = (1, 2, 5, 10, 15, 20)
for penalty in penalties:
- for changepoint in pelt.get_changepoints(energy_data, penalty=penalty):
+ for changepoint in pelt.get_changepoints(
+ energy_data, penalty=penalty, num_changepoints=1
+ ):
if changepoint in candidate_weight:
candidate_weight[changepoint] += 1
else:
@@ -296,6 +300,12 @@ class DataProcessor:
transition_by_node = dict()
compensated_timestamps = list()
+ # up to two nodes may be skipped
+ max_skip_count = 2
+
+ if os.getenv("DFATOOL_DC_MAX_SKIP"):
+ max_skip_count = int(os.getenv("DFATOOL_DC_MAX_SKIP"))
+
for transition_index, candidates in enumerate(
transition_start_candidate_weights
):
@@ -342,32 +352,26 @@ class DataProcessor:
for transition_index, candidates in enumerate(
transition_start_candidate_weights
):
- if transition_index < 2:
- continue
- for from_i, (_, from_drift, _) in enumerate(
- transition_start_candidate_weights[transition_index - 2]
- ):
- for to_i, (_, to_drift, _) in enumerate(candidates):
- # Penalize shortcut by the duration of one sample
- # (~270 us)
- edge_srcs.append(
- nodes_by_transition_index[transition_index - 2][from_i]
- )
- edge_dsts.append(nodes_by_transition_index[transition_index][to_i])
- csr_weights.append(np.abs(from_drift - to_drift) + 270e-6)
- if transition_index < 3:
- continue
- for from_i, (_, from_drift, _) in enumerate(
- transition_start_candidate_weights[transition_index - 3]
- ):
- for to_i, (_, to_drift, _) in enumerate(candidates):
- # Penalize shortcut by the duration of one sample
- # (~270 us)
- edge_srcs.append(
- nodes_by_transition_index[transition_index - 3][from_i]
- )
- edge_dsts.append(nodes_by_transition_index[transition_index][to_i])
- csr_weights.append(np.abs(from_drift - to_drift) + 2 * 270e-6)
+ for skip_count in range(2, max_skip_count + 2):
+ if transition_index < skip_count:
+ continue
+ for from_i, (_, from_drift, _) in enumerate(
+ transition_start_candidate_weights[transition_index - skip_count]
+ ):
+ for to_i, (_, to_drift, _) in enumerate(candidates):
+ # Penalize shortcut by the duration of one sample
+ # (~270 us)
+ edge_srcs.append(
+ nodes_by_transition_index[transition_index - skip_count][
+ from_i
+ ]
+ )
+ edge_dsts.append(
+ nodes_by_transition_index[transition_index][to_i]
+ )
+ csr_weights.append(
+ np.abs(from_drift - to_drift) + skip_count * 270e-6
+ )
sm = scipy.sparse.csr_matrix(
(csr_weights, (edge_srcs, edge_dsts)), shape=(new_node + 1, new_node + 1)