summaryrefslogtreecommitdiff
path: root/lib/loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/loader.py')
-rw-r--r--lib/loader.py312
1 files changed, 301 insertions, 11 deletions
diff --git a/lib/loader.py b/lib/loader.py
index c35eb4c..531559f 100644
--- a/lib/loader.py
+++ b/lib/loader.py
@@ -107,7 +107,14 @@ def _preprocess_mimosa(measurement):
def _preprocess_etlog(measurement):
setup = measurement["setup"]
- etlog = EnergyTraceLog(
+
+ energytrace_class = EnergyTraceWithBarcode
+ if measurement["sync_mode"] == "la":
+ energytrace_class = EnergyTraceWithLogicAnalyzer
+ elif measurement["sync_mode"] == "timer":
+ energytrace_class = EnergyTraceWithTimer
+
+ etlog = energytrace_class(
float(setup["voltage"]),
int(setup["state_duration"]),
measurement["transition_names"],
@@ -242,7 +249,7 @@ class RawData:
file system, making subsequent loads near-instant.
"""
- def __init__(self, filenames, with_traces=False):
+ def __init__(self, filenames, with_traces=False, skip_cache=False):
"""
Create a new RawData object.
@@ -321,7 +328,7 @@ class RawData:
self.pta = self.ptalog["pta"]
self.set_cache_file()
- if not with_traces:
+ if not with_traces and not skip_cache:
self.load_cache()
def set_cache_file(self):
@@ -406,7 +413,7 @@ class RawData:
processed_data["error"] = "; ".join(processed_data["datasource_errors"])
return False
- # Note that the low-level parser (EnergyTraceLog) already checks
+ # Note that the low-level parser (EnergyTraceWithBarcode) already checks
# whether the transition count is correct
return True
@@ -909,6 +916,10 @@ class RawData:
new_filenames = list()
with tarfile.open(filename) as tf:
ptalog = self.ptalog
+ if "sync" in ptalog["opt"]["energytrace"]:
+ sync_mode = ptalog["opt"]["energytrace"]["sync"]
+ else:
+ sync_mode = "bar"
# Benchmark code may be too large to be executed in a single
# run, so benchmarks (a benchmark is basically a list of DFA runs)
@@ -963,13 +974,16 @@ class RawData:
"state_duration": ptalog["opt"]["sleep"],
}
)
- for repeat_id, etlog_file in enumerate(ptalog["files"][j]):
- member = tf.getmember(etlog_file)
+ for repeat_id, etlog_files in enumerate(ptalog["files"][j]):
+ members = list(map(tf.getmember, etlog_files))
offline_data.append(
{
- "content": tf.extractfile(member).read(),
+ "content": list(
+ map(lambda f: tf.extractfile(f).read(), members)
+ ),
+ "sync_mode": sync_mode,
"fileno": j,
- "info": member,
+ "info": members[0],
"setup": self.setup_by_fileno[j],
"repeat_id": repeat_id,
"expected_trace": ptalog["traces"][j],
@@ -1161,7 +1175,7 @@ def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
return by_name, parameter_names, arg_count
-class EnergyTraceLog:
+class EnergyTraceWithBarcode:
"""
EnergyTrace log loader for DFA traces.
@@ -1184,7 +1198,7 @@ class EnergyTraceLog:
with_traces=False,
):
"""
- Create a new EnergyTraceLog object.
+ Create a new EnergyTraceWithBarcode object.
:param voltage: supply voltage [V], usually 3.3 V
:param state_duration: state duration [ms]
@@ -1226,7 +1240,7 @@ class EnergyTraceLog:
)
return list()
- lines = log_data.decode("ascii").split("\n")
+ lines = log_data[0].decode("ascii").split("\n")
data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)
@@ -1599,6 +1613,282 @@ class EnergyTraceLog:
return None, None, None, None
+class EnergyTraceWithLogicAnalyzer:
+ def __init__(
+ self,
+ voltage: float,
+ state_duration: int,
+ transition_names: list,
+ with_traces=False,
+ ):
+
+ """
+ Create a new EnergyTraceWithLogicAnalyzer object.
+
+ :param voltage: supply voltage [V], usually 3.3 V
+ :param state_duration: state duration [ms]
+ :param transition_names: list of transition names in PTA transition order.
+ Needed to map barcode synchronization numbers to transitions.
+ """
+ self.voltage = voltage
+ self.state_duration = state_duration * 1e-3
+ self.transition_names = transition_names
+ self.with_traces = with_traces
+ self.errors = list()
+
+ def load_data(self, log_data):
+ from data.timing.SigrokInterface import SigrokResult
+ from data.energy.EnergyInterface import EnergyInterface
+
+ # Daten laden
+ self.sync_data = SigrokResult.fromString(log_data[0])
+ self.energy_data = EnergyInterface.getDataFromString(str(log_data[1]))
+
+ pass
+
+ def analyze_states(self, traces, offline_index: int):
+ u"""
+ Split log data into states and transitions and return duration, energy, and mean power for each element.
+
+ :param traces: expected traces, needed to synchronize with the measurement.
+ traces is a list of runs, traces[*]['trace'] is a single run
+ (i.e. a list of states and transitions, starting with a transition
+ and ending with a state).
+ :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
+
+ :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
+ :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
+ :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
+
+ :returns: returns list of states and transitions, starting with a transition and ending with astate
+ Each element is a dict containing:
+ * `isa`: 'state' or 'transition'
+ * `W_mean`: Mittelwert der Leistungsaufnahme
+ * `W_std`: Standardabweichung der Leistungsaufnahme
+ * `s`: Dauer
+ if isa == 'transition, it also contains:
+ * `W_mean_delta_prev`: Differenz zwischen W_mean und W_mean des vorherigen Zustands
+ * `W_mean_delta_next`: Differenz zwischen W_mean und W_mean des Folgezustands
+ """
+
+ # Tatsächlich Daten auswerten
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ # remove Dirty Data from previously running program (happens if logic Analyzer Measurement starts earlier than
+ # the HW Reset from energytrace)
+ use_data_after_index = 0
+ for x in range(1, len(self.sync_data.timestamps)):
+ if self.sync_data.timestamps[x] - self.sync_data.timestamps[x - 1] > 1.3:
+ use_data_after_index = x
+ break
+
+ time_stamp_data = self.sync_data.timestamps[use_data_after_index:]
+
+ start_offset = None
+ start_timestamp = None
+ end_offset = None
+ end_timestamp = None
+
+ last_values = [] # maybe needed to flatten the data
+ plot_data_x = []
+ plot_data_y = []
+ last_data = [0, 0, 0, 0]
+
+ power_sync_watt = 0.0162
+
+ # MAIN ENERGY DATA ITERATION
+ for energytrace_dataset in self.energy_data:
+ usedtime = energytrace_dataset[0] - last_data[0]
+ usedenergy = energytrace_dataset[3] - last_data[3]
+ power = usedenergy / usedtime * 10 ** -3 # in watts
+
+ if power > 0:
+ if power > power_sync_watt and start_offset is None:
+ # automatic START offset calculation
+ start_offset = energytrace_dataset[0] / 1_000_000 - time_stamp_data[0]
+ start_timestamp = energytrace_dataset[0] / 1_000_000
+ if power > power_sync_watt and start_offset is not None: # TODO BETTER
+ # automatic END offset calculation (Drift)
+ end_offset = energytrace_dataset[0] / 1_000_000 - time_stamp_data[-1] - start_offset
+ end_timestamp = energytrace_dataset[0] / 1_000_000
+ if len(last_values) > 10:
+ last_values.pop(0)
+ last_values.append(power)
+ # print("%s \tUsed Energy: %i \tUsed Time: %i \tPower: %f \t l_10: %f" % (now_data[0], usedenergy, usedtime, power, sum(last_values) / len(last_values)))
+ plot_data_x.append(energytrace_dataset[0] / 1_000_000)
+ plot_data_y.append(power)
+
+ last_data = energytrace_dataset
+
+ # --------------------
+ # add start offset to the data
+ modified_timestamps_with_offset = []
+ for x in time_stamp_data:
+ if x + start_offset >= 0:
+ modified_timestamps_with_offset.append(x + start_offset)
+
+ # --------------------
+ # Add drift to datapoints
+ modified_timestamps_with_drift = []
+ endFactor = (end_timestamp + end_offset - start_timestamp) / (end_timestamp - start_timestamp)
+ for x in modified_timestamps_with_offset:
+ modified_timestamps_with_drift.append(((x - start_timestamp) * endFactor) + start_timestamp)
+
+ self.start_offset = 0
+ def getPowerBetween(start, end, base_power=0.001469):
+ first_index = 0
+ all_power = 0
+ all_power_count = 0
+ for ind in range(self.start_offset, len(plot_data_x)):
+ first_index = ind
+ if plot_data_x[ind] > start:
+ break
+
+ for ind in range(first_index, len(plot_data_x)):
+ all_power += plot_data_y[ind]
+ all_power_count += 1
+ if plot_data_x[ind] > end:
+ self.start_offset = ind - 1
+ break
+ return (all_power / all_power_count) - base_power
+
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+ energy_trace = list()
+
+ expected_transitions = list()
+ for trace_number, trace in enumerate(traces):
+ for state_or_transition_number, state_or_transition in enumerate(
+ trace["trace"]
+ ):
+ if state_or_transition["isa"] == "transition":
+ try:
+ expected_transitions.append(
+ (
+ state_or_transition["name"],
+ state_or_transition["online_aggregates"]["duration"][
+ offline_index
+ ]
+ * 1e-6,
+ )
+ )
+ except IndexError:
+ self.errors.append(
+ 'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
+ state_or_transition_number,
+ state_or_transition["name"],
+ trace_number,
+ offline_index,
+ )
+ )
+ return energy_trace
+
+
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+ end_transition_ts = None
+ timestamps_sync_start = 0
+ energy_trace_new = list()
+
+ for ts_index in range(0 + timestamps_sync_start, int(len(modified_timestamps_with_drift) / 2)):
+ start_transition_ts = modified_timestamps_with_drift[ts_index * 2]
+ if end_transition_ts is not None:
+ power = getPowerBetween(end_transition_ts, start_transition_ts)
+ #print("STATE", end_transition_ts * 10 ** 6, start_transition_ts * 10 ** 6, (start_transition_ts - end_transition_ts) * 10 ** 6, power)
+ if (start_transition_ts - end_transition_ts) * 10 ** 6 > 900_000 and power > power_sync_watt * 0.9 and ts_index > 10:
+ #remove last transition and stop (upcoming data only sync)
+ del energy_trace_new[-1]
+ break
+ pass
+
+ state = {
+ "isa": "state",
+ "W_mean": power,
+ "W_std": 0.0001,
+ "s": (start_transition_ts - end_transition_ts), #* 10 ** 6,
+ }
+ energy_trace_new.append(state)
+
+ energy_trace_new[-2]["W_mean_delta_next"] = (
+ energy_trace_new[-2]["W_mean"] - energy_trace_new[-1]["W_mean"]
+ )
+
+ # get energy end_transition_ts
+ end_transition_ts = modified_timestamps_with_drift[ts_index * 2 + 1]
+ power = getPowerBetween(start_transition_ts, end_transition_ts)
+ #print("TRANS", start_transition_ts * 10 ** 6, end_transition_ts * 10 ** 6, (end_transition_ts - start_transition_ts) * 10 ** 6, power)
+ transition = {
+ "isa": "transition",
+ "W_mean": power,
+ "W_std": 0.0001,
+ "s": (end_transition_ts - start_transition_ts), #* 10 ** 6,
+ }
+
+ if (end_transition_ts - start_transition_ts) * 10 ** 6 > 2_000_000:
+ # TODO Last data set corrupted? HOT FIX!!!!!!!!!!!! REMOVE LATER
+ #for x in range(4):
+ # del energy_trace_new[-1]
+ #break
+ pass
+
+ energy_trace_new.append(transition)
+ # print(start_transition_ts, "-", end_transition_ts, "-", end_transition_ts - start_transition_ts)
+
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+
+ energy_trace_new = energy_trace_new[4:]
+
+
+
+ for number, item in enumerate(expected_transitions):
+ name, duration = item
+ transition = {
+ "isa": "transition",
+ "W_mean": max(np.random.normal(0.023, 0.002), 0),
+ "W_std": 0.0001,
+ "s": duration,
+ "name": name,
+ }
+
+ energy_trace.append(transition)
+
+ if len(energy_trace) > 1:
+ energy_trace[-1]["W_mean_delta_prev"] = (
+ energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": max(np.random.normal(0.023, 0.002), 0),
+ "W_std": 0.0001,
+ "s": self.state_duration,
+ "name": "state",
+ }
+
+ energy_trace.append(state)
+
+ energy_trace[-2]["W_mean_delta_next"] = (
+ energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
+ )
+
+ st = ""
+ for i, x in enumerate(energy_trace_new[-10:]):
+ st += "(%s|%s|%s)" % (energy_trace[i-10]["name"],x['W_mean'],x['s'])
+
+ #print(st)
+ print(len(self.sync_data.timestamps), " - ", len(energy_trace_new), " - ", len(energy_trace), " - ", ",".join([str(x["s"]) for x in energy_trace_new[-6:]]), " - ", ",".join([str(x["s"]) for x in energy_trace[-6:]]))
+ if len(energy_trace_new) < len(energy_trace):
+ return None
+ return energy_trace_new
+
+
+class EnergyTraceWithTimer(EnergyTraceWithLogicAnalyzer):
+ pass
+
+
class MIMOSA:
"""
MIMOSA log loader for DFA traces with auto-calibration.