summaryrefslogtreecommitdiff
path: root/lib/loader.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/loader.py')
-rw-r--r--lib/loader.py2008
1 files changed, 2008 insertions, 0 deletions
diff --git a/lib/loader.py b/lib/loader.py
new file mode 100644
index 0000000..e8b5090
--- /dev/null
+++ b/lib/loader.py
@@ -0,0 +1,2008 @@
+#!/usr/bin/env python3
+
+import csv
+import io
+import json
+import logging
+import numpy as np
+import os
+import re
+import struct
+import tarfile
+import hashlib
+from multiprocessing import Pool
+from .utils import running_mean, soft_cast_int
+
+logger = logging.getLogger(__name__)
+
+try:
+ from .pubcode import Code128
+ import zbar
+
+ zbar_available = True
+except ImportError:
+ zbar_available = False
+
+
+arg_support_enabled = True
+
+
+class KeysightCSV:
+ """Simple loader for Keysight CSV data, as exported by the windows software."""
+
+ def __init__(self):
+ """Create a new KeysightCSV object."""
+ pass
+
+ def load_data(self, filename: str):
+ """
+ Load log data from filename, return timestamps and currents.
+
+ Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
+ """
+ with open(filename) as f:
+ for i, _ in enumerate(f):
+ pass
+ timestamps = np.ndarray((i - 3), dtype=float)
+ currents = np.ndarray((i - 3), dtype=float)
+ # basically seek back to start
+ with open(filename) as f:
+ for _ in range(4):
+ next(f)
+ reader = csv.reader(f, delimiter=",")
+ for i, row in enumerate(reader):
+ timestamps[i] = float(row[0])
+ currents[i] = float(row[2]) * -1
+ return timestamps, currents
+
+
+def _preprocess_mimosa(measurement):
+ setup = measurement["setup"]
+ mim = MIMOSA(
+ float(setup["mimosa_voltage"]),
+ int(setup["mimosa_shunt"]),
+ with_traces=measurement["with_traces"],
+ )
+ try:
+ charges, triggers = mim.load_data(measurement["content"])
+ trigidx = mim.trigger_edges(triggers)
+ except EOFError as e:
+ mim.errors.append("MIMOSA logfile error: {}".format(e))
+ trigidx = list()
+
+ if len(trigidx) == 0:
+ mim.errors.append("MIMOSA log has no triggers")
+ return {
+ "fileno": measurement["fileno"],
+ "info": measurement["info"],
+ "has_datasource_error": len(mim.errors) > 0,
+ "datasource_errors": mim.errors,
+ "expected_trace": measurement["expected_trace"],
+ "repeat_id": measurement["repeat_id"],
+ }
+
+ cal_edges = mim.calibration_edges(
+ running_mean(mim.currents_nocal(charges[0 : trigidx[0]]), 10)
+ )
+ calfunc, caldata = mim.calibration_function(charges, cal_edges)
+ vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
+
+ processed_data = {
+ "fileno": measurement["fileno"],
+ "info": measurement["info"],
+ "triggers": len(trigidx),
+ "first_trig": trigidx[0] * 10,
+ "calibration": caldata,
+ "energy_trace": mim.analyze_states(charges, trigidx, vcalfunc),
+ "has_datasource_error": len(mim.errors) > 0,
+ "datasource_errors": mim.errors,
+ }
+
+ for key in ["expected_trace", "repeat_id"]:
+ if key in measurement:
+ processed_data[key] = measurement[key]
+
+ return processed_data
+
+
+def _preprocess_etlog(measurement):
+ setup = measurement["setup"]
+ etlog = EnergyTraceLog(
+ float(setup["voltage"]),
+ int(setup["state_duration"]),
+ measurement["transition_names"],
+ with_traces=measurement["with_traces"],
+ )
+ try:
+ etlog.load_data(measurement["content"])
+ states_and_transitions = etlog.analyze_states(
+ measurement["expected_trace"], measurement["repeat_id"]
+ )
+ except EOFError as e:
+ etlog.errors.append("EnergyTrace logfile error: {}".format(e))
+
+ processed_data = {
+ "fileno": measurement["fileno"],
+ "repeat_id": measurement["repeat_id"],
+ "info": measurement["info"],
+ "expected_trace": measurement["expected_trace"],
+ "energy_trace": states_and_transitions,
+ "has_datasource_error": len(etlog.errors) > 0,
+ "datasource_errors": etlog.errors,
+ }
+
+ return processed_data
+
+
+class TimingData:
+ """
+ Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.
+
+ Excpets a specific trace format and UART log output (as produced by
+ generate-dfa-benchmark.py). Prunes states from output. (TODO)
+ """
+
+ def __init__(self, filenames):
+ """
+ Create a new TimingData object.
+
+ Each filenames element corresponds to a measurement run.
+ """
+ self.filenames = filenames.copy()
+ self.traces_by_fileno = []
+ self.setup_by_fileno = []
+ self.preprocessed = False
+ self._parameter_names = None
+ self.version = 0
+
+ def _concatenate_analyzed_traces(self):
+ self.traces = []
+ for trace_group in self.traces_by_fileno:
+ for trace in trace_group:
+ # TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
+ transitions = list(
+ filter(lambda x: x["isa"] == "transition", trace["trace"])
+ )
+ self.traces.append({"id": trace["id"], "trace": transitions})
+ for i, trace in enumerate(self.traces):
+ trace["orig_id"] = trace["id"]
+ trace["id"] = i
+ for log_entry in trace["trace"]:
+ paramkeys = sorted(log_entry["parameter"].keys())
+ if "param" not in log_entry["offline_aggregates"]:
+ log_entry["offline_aggregates"]["param"] = list()
+ if "duration" in log_entry["offline_aggregates"]:
+ for i in range(len(log_entry["offline_aggregates"]["duration"])):
+ paramvalues = list()
+ for paramkey in paramkeys:
+ if type(log_entry["parameter"][paramkey]) is list:
+ paramvalues.append(
+ soft_cast_int(log_entry["parameter"][paramkey][i])
+ )
+ else:
+ paramvalues.append(
+ soft_cast_int(log_entry["parameter"][paramkey])
+ )
+ if arg_support_enabled and "args" in log_entry:
+ paramvalues.extend(map(soft_cast_int, log_entry["args"]))
+ log_entry["offline_aggregates"]["param"].append(paramvalues)
+
+ def _preprocess_0(self):
+ for filename in self.filenames:
+ with open(filename, "r") as f:
+ log_data = json.load(f)
+ self.traces_by_fileno.extend(log_data["traces"])
+ self._concatenate_analyzed_traces()
+
+ def get_preprocessed_data(self):
+ """
+ Return a list of DFA traces annotated with timing and parameter data.
+
+ Suitable for the PTAModel constructor.
+ See PTAModel(...) docstring for format details.
+ """
+ if self.preprocessed:
+ return self.traces
+ if self.version == 0:
+ self._preprocess_0()
+ self.preprocessed = True
+ return self.traces
+
+
+def sanity_check_aggregate(aggregate):
+ for key in aggregate:
+ if "param" not in aggregate[key]:
+ raise RuntimeError("aggregate[{}][param] does not exist".format(key))
+ if "attributes" not in aggregate[key]:
+ raise RuntimeError("aggregate[{}][attributes] does not exist".format(key))
+ for attribute in aggregate[key]["attributes"]:
+ if attribute not in aggregate[key]:
+ raise RuntimeError(
+ "aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]".format(
+ key, attribute, key
+ )
+ )
+ param_len = len(aggregate[key]["param"])
+ attr_len = len(aggregate[key][attribute])
+ if param_len != attr_len:
+ raise RuntimeError(
+ "parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}".format(
+ key, param_len, key, attribute, attr_len
+ )
+ )
+
+
+class RawData:
+ """
+ Loader for hardware model traces measured with MIMOSA.
+
+ Expects a specific trace format and UART log output (as produced by the
+ dfatool benchmark generator). Loads data, prunes bogus measurements, and
+ provides preprocessed data suitable for PTAModel. Results are cached on the
+ file system, making subsequent loads near-instant.
+ """
+
+ def __init__(self, filenames, with_traces=False):
+ """
+ Create a new RawData object.
+
+ Each filename element corresponds to a measurement run.
+ It must be a tar archive with the following contents:
+
+ Version 0:
+
+ * `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
+ `mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
+ * `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
+ Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
+ Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
+ Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
+ Each transition must additionally contain `.plan.level` ("user" or "epilogue").
+ Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
+ * At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
+ MIMOSA files are parsed by the `MIMOSA` class.
+
+ Version 1:
+
+ * `ptalog.json`: measurement setup and traces. Contents:
+ `.opt.sleep`: state duration
+ `.opt.pta`: PTA
+ `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
+ `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
+ Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
+ Each transition must additionally contain `.args`
+ `.opt.files`: list of coresponding MIMOSA measurements.
+ `.opt.files[]` = ['abc123.mim', ...]
+ `.opt.configs`: ....
+ * MIMOSA log files (`*.mim`) as specified in `.opt.files`
+
+ Version 2:
+
+ * `ptalog.json`: measurement setup and traces. Contents:
+ `.opt.sleep`: state duration
+ `.opt.pta`: PTA
+ `.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
+ `.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
+ Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
+ Each transition must additionally contain `.args` and `.duration`
+ * `.duration`: list of durations, one per repetition
+ `.opt.files`: list of coresponding EnergyTrace measurements.
+ `.opt.files[]` = ['abc123.etlog', ...]
+ `.opt.configs`: ....
+ * EnergyTrace log files (`*.etlog`) as specified in `.opt.files`
+
+ If a cached result for a file is available, it is loaded and the file
+ is not preprocessed, unless `with_traces` is set.
+
+ tbd
+ """
+ self.with_traces = with_traces
+ self.filenames = filenames.copy()
+ self.traces_by_fileno = []
+ self.setup_by_fileno = []
+ self.version = 0
+ self.preprocessed = False
+ self._parameter_names = None
+ self.ignore_clipping = False
+ self.pta = None
+
+ with tarfile.open(filenames[0]) as tf:
+ for member in tf.getmembers():
+ if member.name == "ptalog.json" and self.version == 0:
+ self.version = 1
+ # might also be version 2
+ # depends on whether *.etlog exists or not
+ elif ".etlog" in member.name:
+ self.version = 2
+ break
+
+ self.set_cache_file()
+ if not with_traces:
+ self.load_cache()
+
+ def set_cache_file(self):
+ cache_key = hashlib.sha256("!".join(self.filenames).encode()).hexdigest()
+ self.cache_dir = os.path.dirname(self.filenames[0]) + "/cache"
+ self.cache_file = "{}/{}.json".format(self.cache_dir, cache_key)
+
+ def load_cache(self):
+ if os.path.exists(self.cache_file):
+ with open(self.cache_file, "r") as f:
+ cache_data = json.load(f)
+ self.filenames = cache_data["filenames"]
+ self.traces = cache_data["traces"]
+ self.preprocessing_stats = cache_data["preprocessing_stats"]
+ if "pta" in cache_data:
+ self.pta = cache_data["pta"]
+ self.setup_by_fileno = cache_data["setup_by_fileno"]
+ self.preprocessed = True
+
+ def save_cache(self):
+ if self.with_traces:
+ return
+ try:
+ os.mkdir(self.cache_dir)
+ except FileExistsError:
+ pass
+ with open(self.cache_file, "w") as f:
+ cache_data = {
+ "filenames": self.filenames,
+ "traces": self.traces,
+ "preprocessing_stats": self.preprocessing_stats,
+ "pta": self.pta,
+ "setup_by_fileno": self.setup_by_fileno,
+ }
+ json.dump(cache_data, f)
+
+ def _state_is_too_short(self, online, offline, state_duration, next_transition):
+ # We cannot control when an interrupt causes a state to be left
+ if next_transition["plan"]["level"] == "epilogue":
+ return False
+
+ # Note: state_duration is stored as ms, not us
+ return offline["us"] < state_duration * 500
+
+ def _state_is_too_long(self, online, offline, state_duration, prev_transition):
+ # If the previous state was left by an interrupt, we may have some
+ # waiting time left over. So it's okay if the current state is longer
+ # than expected.
+ if prev_transition["plan"]["level"] == "epilogue":
+ return False
+ # state_duration is stored as ms, not us
+ return offline["us"] > state_duration * 1500
+
+ def _measurement_is_valid_2(self, processed_data):
+ """
+ Check if a dfatool v2 measurement is valid.
+
+ processed_data layout:
+ 'fileno' : measurement['fileno'],
+ 'info' : measurement['info'],
+ 'energy_trace' : etlog.analyze_states()
+ A sequence of unnamed, unparameterized states and transitions with
+ power and timing data
+ 'expected_trace' : trace from PTA DFS (with parameter data)
+ etlog.analyze_states returns a list of (alternating) states and transitions.
+ Each element is a dict containing:
+ - isa: 'state' oder 'transition'
+ - W_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
+ - W_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ - s: duration
+
+ if isa == 'transition':
+ - W_mean_delta_prev: Differenz zwischen W_mean und W_mean des vorherigen Zustands
+ - W_mean_delta_next: Differenz zwischen W_mean und W_mean des Folgezustands
+ """
+
+ # Check for low-level parser errors
+ if processed_data["has_datasource_error"]:
+ processed_data["error"] = "; ".join(processed_data["datasource_errors"])
+ return False
+
+ # Note that the low-level parser (EnergyTraceLog) already checks
+ # whether the transition count is correct
+
+ return True
+
+ def _measurement_is_valid_01(self, processed_data):
+ """
+ Check if a dfatool v0 or v1 measurement is valid.
+
+ processed_data layout:
+ 'fileno' : measurement['fileno'],
+ 'info' : measurement['info'],
+ 'triggers' : len(trigidx),
+ 'first_trig' : trigidx[0] * 10,
+ 'calibration' : caldata,
+ 'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
+ A sequence of unnamed, unparameterized states and transitions with
+ power and timing data
+ 'expected_trace' : trace from PTA DFS (with parameter data)
+ mim.analyze_states returns a list of (alternating) states and transitions.
+ Each element is a dict containing:
+ - isa: 'state' oder 'transition'
+ - clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
+ - raw_mean: Mittelwert der Rohwerte
+ - raw_std: Standardabweichung der Rohwerte
+ - uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
+ - uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ - us: Dauer
+
+ Nur falls isa == 'transition':
+ - timeout: Dauer des vorherigen Zustands
+ - uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
+ - uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
+ """
+ setup = self.setup_by_fileno[processed_data["fileno"]]
+ if "expected_trace" in processed_data:
+ traces = processed_data["expected_trace"]
+ else:
+ traces = self.traces_by_fileno[processed_data["fileno"]]
+ state_duration = setup["state_duration"]
+
+ # Check MIMOSA error
+ if processed_data["has_datasource_error"]:
+ processed_data["error"] = "; ".join(processed_data["datasource_errors"])
+ return False
+
+ # Check trigger count
+ sched_trigger_count = 0
+ for run in traces:
+ sched_trigger_count += len(run["trace"])
+ if sched_trigger_count != processed_data["triggers"]:
+ processed_data[
+ "error"
+ ] = "got {got:d} trigger edges, expected {exp:d}".format(
+ got=processed_data["triggers"], exp=sched_trigger_count
+ )
+ return False
+ # Check state durations. Very short or long states can indicate a
+ # missed trigger signal which wasn't detected due to duplicate
+ # triggers elsewhere
+ online_datapoints = []
+ for run_idx, run in enumerate(traces):
+ for trace_part_idx in range(len(run["trace"])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = processed_data["energy_trace"][offline_idx]
+ online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
+
+ if self._parameter_names is None:
+ self._parameter_names = sorted(online_trace_part["parameter"].keys())
+
+ if sorted(online_trace_part["parameter"].keys()) != self._parameter_names:
+ processed_data[
+ "error"
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}".format(
+ off_idx=offline_idx,
+ on_idx=online_run_idx,
+ on_sub=online_trace_part_idx,
+ on_name=online_trace_part["name"],
+ param_want=self._parameter_names,
+ param_is=sorted(online_trace_part["parameter"].keys()),
+ )
+
+ if online_trace_part["isa"] != offline_trace_part["isa"]:
+ processed_data[
+ "error"
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}".format(
+ off_idx=offline_idx,
+ on_idx=online_run_idx,
+ on_sub=online_trace_part_idx,
+ on_name=online_trace_part["name"],
+ off_isa=offline_trace_part["isa"],
+ on_isa=online_trace_part["isa"],
+ )
+ return False
+
+ # Clipping in UNINITIALIZED (offline_idx == 0) can happen during
+ # calibration and is handled by MIMOSA
+ if (
+ offline_idx != 0
+ and offline_trace_part["clip_rate"] != 0
+ and not self.ignore_clipping
+ ):
+ processed_data[
+ "error"
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time".format(
+ off_idx=offline_idx,
+ on_idx=online_run_idx,
+ on_sub=online_trace_part_idx,
+ on_name=online_trace_part["name"],
+ clip=offline_trace_part["clip_rate"] * 100,
+ )
+ return False
+
+ if (
+ online_trace_part["isa"] == "state"
+ and online_trace_part["name"] != "UNINITIALIZED"
+ and len(traces[online_run_idx]["trace"]) > online_trace_part_idx + 1
+ ):
+ online_prev_transition = traces[online_run_idx]["trace"][
+ online_trace_part_idx - 1
+ ]
+ online_next_transition = traces[online_run_idx]["trace"][
+ online_trace_part_idx + 1
+ ]
+ try:
+ if self._state_is_too_short(
+ online_trace_part,
+ offline_trace_part,
+ state_duration,
+ online_next_transition,
+ ):
+ processed_data[
+ "error"
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)".format(
+ off_idx=offline_idx,
+ on_idx=online_run_idx,
+ on_sub=online_trace_part_idx,
+ on_name=online_trace_part["name"],
+ dur=offline_trace_part["us"],
+ )
+ return False
+ if self._state_is_too_long(
+ online_trace_part,
+ offline_trace_part,
+ state_duration,
+ online_prev_transition,
+ ):
+ processed_data[
+ "error"
+ ] = "Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)".format(
+ off_idx=offline_idx,
+ on_idx=online_run_idx,
+ on_sub=online_trace_part_idx,
+ on_name=online_trace_part["name"],
+ dur=offline_trace_part["us"],
+ )
+ return False
+ except KeyError:
+ pass
+ # TODO es gibt next_transitions ohne 'plan'
+ return True
+
+ def _merge_online_and_offline(self, measurement):
+ # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
+ # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
+ # (appends data from measurement['energy_trace'])
+ # If measurement['expected_trace'] exists, it is edited in place instead
+ online_datapoints = []
+ if "expected_trace" in measurement:
+ traces = measurement["expected_trace"]
+ traces = self.traces_by_fileno[measurement["fileno"]]
+ else:
+ traces = self.traces_by_fileno[measurement["fileno"]]
+ for run_idx, run in enumerate(traces):
+ for trace_part_idx in range(len(run["trace"])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = measurement["energy_trace"][offline_idx]
+ online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
+
+ if "offline" not in online_trace_part:
+ online_trace_part["offline"] = [offline_trace_part]
+ else:
+ online_trace_part["offline"].append(offline_trace_part)
+
+ paramkeys = sorted(online_trace_part["parameter"].keys())
+
+ paramvalues = list()
+
+ for paramkey in paramkeys:
+ if type(online_trace_part["parameter"][paramkey]) is list:
+ paramvalues.append(
+ soft_cast_int(
+ online_trace_part["parameter"][paramkey][
+ measurement["repeat_id"]
+ ]
+ )
+ )
+ else:
+ paramvalues.append(
+ soft_cast_int(online_trace_part["parameter"][paramkey])
+ )
+
+ # NB: Unscheduled transitions do not have an 'args' field set.
+ # However, they should only be caused by interrupts, and
+ # interrupts don't have args anyways.
+ if arg_support_enabled and "args" in online_trace_part:
+ paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))
+
+ if "offline_aggregates" not in online_trace_part:
+ online_trace_part["offline_attributes"] = [
+ "power",
+ "duration",
+ "energy",
+ ]
+ online_trace_part["offline_aggregates"] = {
+ "power": [],
+ "duration": [],
+ "power_std": [],
+ "energy": [],
+ "paramkeys": [],
+ "param": [],
+ }
+ if online_trace_part["isa"] == "transition":
+ online_trace_part["offline_attributes"].extend(
+ ["rel_energy_prev", "rel_energy_next", "timeout"]
+ )
+ online_trace_part["offline_aggregates"]["rel_energy_prev"] = []
+ online_trace_part["offline_aggregates"]["rel_energy_next"] = []
+ online_trace_part["offline_aggregates"]["timeout"] = []
+
+ # Note: All state/transitions are 20us "too long" due to injected
+ # active wait states. These are needed to work around MIMOSA's
+ # relatively low sample rate of 100 kHz (10us) and removed here.
+ online_trace_part["offline_aggregates"]["power"].append(
+ offline_trace_part["uW_mean"]
+ )
+ online_trace_part["offline_aggregates"]["duration"].append(
+ offline_trace_part["us"] - 20
+ )
+ online_trace_part["offline_aggregates"]["power_std"].append(
+ offline_trace_part["uW_std"]
+ )
+ online_trace_part["offline_aggregates"]["energy"].append(
+ offline_trace_part["uW_mean"] * (offline_trace_part["us"] - 20)
+ )
+ online_trace_part["offline_aggregates"]["paramkeys"].append(paramkeys)
+ online_trace_part["offline_aggregates"]["param"].append(paramvalues)
+ if online_trace_part["isa"] == "transition":
+ online_trace_part["offline_aggregates"]["rel_energy_prev"].append(
+ offline_trace_part["uW_mean_delta_prev"]
+ * (offline_trace_part["us"] - 20)
+ )
+ online_trace_part["offline_aggregates"]["rel_energy_next"].append(
+ offline_trace_part["uW_mean_delta_next"]
+ * (offline_trace_part["us"] - 20)
+ )
+ online_trace_part["offline_aggregates"]["timeout"].append(
+ offline_trace_part["timeout"]
+ )
+
+ def _merge_online_and_etlog(self, measurement):
+ # Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
+ # and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
+ # (appends data from measurement['energy_trace'])
+ online_datapoints = []
+ traces = self.traces_by_fileno[measurement["fileno"]]
+ for run_idx, run in enumerate(traces):
+ for trace_part_idx in range(len(run["trace"])):
+ online_datapoints.append((run_idx, trace_part_idx))
+ for offline_idx, online_ref in enumerate(online_datapoints):
+ online_run_idx, online_trace_part_idx = online_ref
+ offline_trace_part = measurement["energy_trace"][offline_idx]
+ online_trace_part = traces[online_run_idx]["trace"][online_trace_part_idx]
+
+ if "offline" not in online_trace_part:
+ online_trace_part["offline"] = [offline_trace_part]
+ else:
+ online_trace_part["offline"].append(offline_trace_part)
+
+ paramkeys = sorted(online_trace_part["parameter"].keys())
+
+ paramvalues = list()
+
+ for paramkey in paramkeys:
+ if type(online_trace_part["parameter"][paramkey]) is list:
+ paramvalues.append(
+ soft_cast_int(
+ online_trace_part["parameter"][paramkey][
+ measurement["repeat_id"]
+ ]
+ )
+ )
+ else:
+ paramvalues.append(
+ soft_cast_int(online_trace_part["parameter"][paramkey])
+ )
+
+ # NB: Unscheduled transitions do not have an 'args' field set.
+ # However, they should only be caused by interrupts, and
+ # interrupts don't have args anyways.
+ if arg_support_enabled and "args" in online_trace_part:
+ paramvalues.extend(map(soft_cast_int, online_trace_part["args"]))
+
+ if "offline_aggregates" not in online_trace_part:
+ online_trace_part["offline_aggregates"] = {
+ "offline_attributes": ["power", "duration", "energy"],
+ "duration": list(),
+ "power": list(),
+ "power_std": list(),
+ "energy": list(),
+ "paramkeys": list(),
+ "param": list(),
+ }
+
+ offline_aggregates = online_trace_part["offline_aggregates"]
+
+ # if online_trace_part['isa'] == 'transitions':
+ # online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next'])
+ # offline_aggregates['rel_energy_prev'] = list()
+ # offline_aggregates['rel_energy_next'] = list()
+
+ offline_aggregates["duration"].append(offline_trace_part["s"] * 1e6)
+ offline_aggregates["power"].append(offline_trace_part["W_mean"] * 1e6)
+ offline_aggregates["power_std"].append(offline_trace_part["W_std"] * 1e6)
+ offline_aggregates["energy"].append(
+ offline_trace_part["W_mean"] * offline_trace_part["s"] * 1e12
+ )
+ offline_aggregates["paramkeys"].append(paramkeys)
+ offline_aggregates["param"].append(paramvalues)
+
+ # if online_trace_part['isa'] == 'transition':
+ # offline_aggregates['rel_energy_prev'].append(offline_trace_part['W_mean_delta_prev'] * offline_trace_part['s'] * 1e12)
+ # offline_aggregates['rel_energy_next'].append(offline_trace_part['W_mean_delta_next'] * offline_trace_part['s'] * 1e12)
+
+ def _concatenate_traces(self, list_of_traces):
+ """
+ Concatenate `list_of_traces` (list of lists) into a single trace while adjusting trace IDs.
+
+ :param list_of_traces: List of list of traces.
+ :returns: List of traces with ['id'] in ascending order and ['orig_id'] as previous ['id']
+ """
+
+ trace_output = list()
+ for trace in list_of_traces:
+ trace_output.extend(trace.copy())
+ for i, trace in enumerate(trace_output):
+ trace["orig_id"] = trace["id"]
+ trace["id"] = i
+ return trace_output
+
+ def get_preprocessed_data(self):
+ """
+ Return a list of DFA traces annotated with energy, timing, and parameter data.
+ The list is cached on disk, unless the constructor was called with `with_traces` set.
+
+ Each DFA trace contains the following elements:
+ * `id`: Numeric ID, starting with 1
+ * `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
+ * `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
+ * `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.
+
+ Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
+ * `isa`: "state" or "transition"
+ * `name`: name
+ * `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
+ Entry contents:
+ - `clip_rate`: rate of clipped energy measurements, 0 .. 1
+ - `raw_mean`: mean raw MIMOSA value
+ - `raw_std`: standard deviation of raw MIMOSA value
+ - `uW_mean`: mean power draw, uW
+ - `uw_std`: standard deviation of power draw, uW
+ - `us`: state/transition duration, us
+ - `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
+ - `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
+ - `timeout`: (only for transitions) duration of previous state, us
+ * `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
+ - `duration`: state/transition durations ("us"), us
+ - `energy`: state/transition energy ("us * uW_mean"), us
+ - `power`: mean power draw ("uW_mean"), uW
+ - `power_std`: standard deviations of power draw ("uW_std"), uW^2
+ - `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
+ - `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
+ - `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
+ - `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
+ - `timeout`: (only for transitions) duration of previous state, us
+ * `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of themodel.
+ This list ultimately decides which hardware/software attributes the model describes.
+ If isa == state, it contains power, duration, energy
+ If isa == transition, it contains power, duration, energy, rel_energy_prev, rel_energy_next, timeout
+ * `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
+ Entry contents for isa == state:
+ - `time`: state/transition
+ Entry contents for isa == transition:
+ - `timeout`: Duration of previous state, measured using on-board timers
+ * `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
+ * `plan`: Dictionary describing expected behaviour according to schedule / offline model.
+ Contents for isa == state: `energy`, `power`, `time`
+ Contents for isa == transition: `energy`, `timeout`, `level`.
+ If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
+ Each transition also contains:
+ * `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
+ * `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
+ """
+ if self.preprocessed:
+ return self.traces
+ if self.version == 0:
+ self._preprocess_012(0)
+ elif self.version == 1:
+ self._preprocess_012(1)
+ elif self.version == 2:
+ self._preprocess_012(2)
+ self.preprocessed = True
+ self.save_cache()
+ return self.traces
+
+ def _preprocess_012(self, version):
+ """Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
+ offline_data = []
+ for i, filename in enumerate(self.filenames):
+
+ if version == 0:
+
+ with tarfile.open(filename) as tf:
+ self.setup_by_fileno.append(json.load(tf.extractfile("setup.json")))
+ self.traces_by_fileno.append(
+ json.load(tf.extractfile("src/apps/DriverEval/DriverLog.json"))
+ )
+ for member in tf.getmembers():
+ _, extension = os.path.splitext(member.name)
+ if extension == ".mim":
+ offline_data.append(
+ {
+ "content": tf.extractfile(member).read(),
+ "fileno": i,
+ "info": member,
+ "setup": self.setup_by_fileno[i],
+ "with_traces": self.with_traces,
+ }
+ )
+
+ elif version == 1:
+
+ new_filenames = list()
+ with tarfile.open(filename) as tf:
+ ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
+ self.pta = ptalog["pta"]
+
+ # Benchmark code may be too large to be executed in a single
+ # run, so benchmarks (a benchmark is basically a list of DFA runs)
+ # may be split up. To accomodate this, ptalog['traces'] is
+ # a list of lists: ptalog['traces'][0] corresponds to the
+ # first benchmark part, ptalog['traces'][1] to the
+ # second, and so on. ptalog['traces'][0][0] is the first
+ # trace (a sequence of states and transitions) in the
+ # first benchmark part, ptalog['traces'][0][1] the second, etc.
+ #
+ # As traces are typically repeated to minimize the effect
+ # of random noise, observations for each benchmark part
+ # are also lists. In this case, this applies in two
+ # cases: traces[i][j]['parameter'][some_param] is either
+ # a value (if the parameter is controlld by software)
+ # or a list (if the parameter is known a posteriori, e.g.
+ # "how many retransmissions did this packet take?").
+ #
+ # The second case is the MIMOSA energy measurements, which
+ # are listed in ptalog['files']. ptalog['files'][0]
+ # contains a list of files for the first benchmark part,
+ # ptalog['files'][0][0] is its first iteration/repetition,
+ # ptalog['files'][0][1] the second, etc.
+
+ for j, traces in enumerate(ptalog["traces"]):
+ new_filenames.append("{}#{}".format(filename, j))
+ self.traces_by_fileno.append(traces)
+ self.setup_by_fileno.append(
+ {
+ "mimosa_voltage": ptalog["configs"][j]["voltage"],
+ "mimosa_shunt": ptalog["configs"][j]["shunt"],
+ "state_duration": ptalog["opt"]["sleep"],
+ }
+ )
+ for repeat_id, mim_file in enumerate(ptalog["files"][j]):
+ member = tf.getmember(mim_file)
+ offline_data.append(
+ {
+ "content": tf.extractfile(member).read(),
+ "fileno": j,
+ "info": member,
+ "setup": self.setup_by_fileno[j],
+ "repeat_id": repeat_id,
+ "expected_trace": ptalog["traces"][j],
+ "with_traces": self.with_traces,
+ }
+ )
+ self.filenames = new_filenames
+
+ elif version == 2:
+
+ new_filenames = list()
+ with tarfile.open(filename) as tf:
+ ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
+ self.pta = ptalog["pta"]
+
+ # Benchmark code may be too large to be executed in a single
+ # run, so benchmarks (a benchmark is basically a list of DFA runs)
+ # may be split up. To accomodate this, ptalog['traces'] is
+ # a list of lists: ptalog['traces'][0] corresponds to the
+ # first benchmark part, ptalog['traces'][1] to the
+ # second, and so on. ptalog['traces'][0][0] is the first
+ # trace (a sequence of states and transitions) in the
+ # first benchmark part, ptalog['traces'][0][1] the second, etc.
+ #
+ # As traces are typically repeated to minimize the effect
+ # of random noise, observations for each benchmark part
+ # are also lists. In this case, this applies in two
+ # cases: traces[i][j]['parameter'][some_param] is either
+ # a value (if the parameter is controlld by software)
+ # or a list (if the parameter is known a posteriori, e.g.
+ # "how many retransmissions did this packet take?").
+ #
+ # The second case is the MIMOSA energy measurements, which
+ # are listed in ptalog['files']. ptalog['files'][0]
+ # contains a list of files for the first benchmark part,
+ # ptalog['files'][0][0] is its first iteration/repetition,
+ # ptalog['files'][0][1] the second, etc.
+
+ # generate-dfa-benchmark uses TimingHarness to obtain timing data.
+ # Data is placed in 'offline_aggregates', which is also
+ # where we are going to store power/energy data.
+ # In case of invalid measurements, this can lead to a
+ # mismatch between duration and power/energy data, e.g.
+ # where duration = [A, B, C], power = [a, b], B belonging
+ # to an invalid measurement and thus power[b] corresponding
+ # to duration[C]. At the moment, this is harmless, but in the
+ # future it might not be.
+ if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
+ for trace_group in ptalog["traces"]:
+ for trace in trace_group:
+ for state_or_transition in trace["trace"]:
+ offline_aggregates = state_or_transition.pop(
+ "offline_aggregates", None
+ )
+ if offline_aggregates:
+ state_or_transition[
+ "online_aggregates"
+ ] = offline_aggregates
+
+ for j, traces in enumerate(ptalog["traces"]):
+ new_filenames.append("{}#{}".format(filename, j))
+ self.traces_by_fileno.append(traces)
+ self.setup_by_fileno.append(
+ {
+ "voltage": ptalog["configs"][j]["voltage"],
+ "state_duration": ptalog["opt"]["sleep"],
+ }
+ )
+ for repeat_id, etlog_file in enumerate(ptalog["files"][j]):
+ member = tf.getmember(etlog_file)
+ offline_data.append(
+ {
+ "content": tf.extractfile(member).read(),
+ "fileno": j,
+ "info": member,
+ "setup": self.setup_by_fileno[j],
+ "repeat_id": repeat_id,
+ "expected_trace": ptalog["traces"][j],
+ "with_traces": self.with_traces,
+ "transition_names": list(
+ map(
+ lambda x: x["name"],
+ ptalog["pta"]["transitions"],
+ )
+ ),
+ }
+ )
+ self.filenames = new_filenames
+ # TODO remove 'offline_aggregates' from pre-parse data and place
+ # it under 'online_aggregates' or similar instead. This way, if
+ # a .etlog file fails to parse, its corresponding duration data
+ # will not linger in 'offline_aggregates' and confuse the hell
+ # out of other code paths
+
+ with Pool() as pool:
+ if self.version <= 1:
+ measurements = pool.map(_preprocess_mimosa, offline_data)
+ elif self.version == 2:
+ measurements = pool.map(_preprocess_etlog, offline_data)
+
+ num_valid = 0
+ for measurement in measurements:
+
+ if "energy_trace" not in measurement:
+ logger.warning(
+ "Skipping {ar:s}/{m:s}: {e:s}".format(
+ ar=self.filenames[measurement["fileno"]],
+ m=measurement["info"].name,
+ e="; ".join(measurement["datasource_errors"]),
+ )
+ )
+ continue
+
+ if version == 0:
+ # Strip the last state (it is not part of the scheduled measurement)
+ measurement["energy_trace"].pop()
+ elif version == 1:
+ # The first online measurement is the UNINITIALIZED state. In v1,
+ # it is not part of the expected PTA trace -> remove it.
+ measurement["energy_trace"].pop(0)
+
+ if version == 0 or version == 1:
+ if self._measurement_is_valid_01(measurement):
+ self._merge_online_and_offline(measurement)
+ num_valid += 1
+ else:
+ logger.warning(
+ "Skipping {ar:s}/{m:s}: {e:s}".format(
+ ar=self.filenames[measurement["fileno"]],
+ m=measurement["info"].name,
+ e=measurement["error"],
+ )
+ )
+ elif version == 2:
+ if self._measurement_is_valid_2(measurement):
+ self._merge_online_and_etlog(measurement)
+ num_valid += 1
+ else:
+ logger.warning(
+ "Skipping {ar:s}/{m:s}: {e:s}".format(
+ ar=self.filenames[measurement["fileno"]],
+ m=measurement["info"].name,
+ e=measurement["error"],
+ )
+ )
+ logger.info(
+ "{num_valid:d}/{num_total:d} measurements are valid".format(
+ num_valid=num_valid, num_total=len(measurements)
+ )
+ )
+ if version == 0:
+ self.traces = self._concatenate_traces(self.traces_by_fileno)
+ elif version == 1:
+ self.traces = self._concatenate_traces(
+ map(lambda x: x["expected_trace"], measurements)
+ )
+ self.traces = self._concatenate_traces(self.traces_by_fileno)
+ elif version == 2:
+ self.traces = self._concatenate_traces(self.traces_by_fileno)
+ self.preprocessing_stats = {
+ "num_runs": len(measurements),
+ "num_valid": num_valid,
+ }
+
+
+def _add_trace_data_to_aggregate(aggregate, key, element):
+ # Only cares about element['isa'], element['offline_aggregates'], and
+ # element['plan']['level']
+ if key not in aggregate:
+ aggregate[key] = {"isa": element["isa"]}
+ for datakey in element["offline_aggregates"].keys():
+ aggregate[key][datakey] = []
+ if element["isa"] == "state":
+ aggregate[key]["attributes"] = ["power"]
+ else:
+ # TODO do not hardcode values
+ aggregate[key]["attributes"] = [
+ "duration",
+ "energy",
+ "rel_energy_prev",
+ "rel_energy_next",
+ ]
+ # Uncomment this line if you also want to analyze mean transition power
+ # aggrgate[key]['attributes'].append('power')
+ if "plan" in element and element["plan"]["level"] == "epilogue":
+ aggregate[key]["attributes"].insert(0, "timeout")
+ attributes = aggregate[key]["attributes"].copy()
+ for attribute in attributes:
+ if attribute not in element["offline_aggregates"]:
+ aggregate[key]["attributes"].remove(attribute)
+ for datakey, dataval in element["offline_aggregates"].items():
+ aggregate[key][datakey].extend(dataval)
+
+
+def pta_trace_to_aggregate(traces, ignore_trace_indexes=[]):
+ u"""
+ Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.
+
+ arguments:
+ traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
+ Jeder Lauf:
+ - id: int Nummer des Laufs, beginnend bei 1
+ - trace: [ ... Liste von Zuständen und Transitionen
+ Jeweils:
+ - name: str Name
+ - isa: str state // transition
+ - parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
+ - args: [ Funktionsargumente, falls isa == 'transition' ]
+ - offline_aggregates:
+ - power: [float(uW)] Mittlere Leistung während Zustand/Transitions
+ - power_std: [float(uW^2)] Standardabweichung der Leistung
+ - duration: [int(us)] Dauer
+ - energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
+ - clip_rate: [float(0..1)] Clipping
+ - paramkeys: [[str]] Name der berücksichtigten Parameter
+ - param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
+ Falls isa == 'transition':
+ - timeout: [int(us)] Dauer des vorherigen Zustands
+ - rel_energy_prev: [int(pJ)]
+ - rel_energy_next: [int(pJ)]
+ ]
+ ]
+ ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.
+
+ returns a tuple of three elements:
+ by_name -- measurements aggregated by state/transition name, annotated with parameter values
+ parameter_names -- list of parameter names
+ arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function
+
+ by_name layout:
+ Dictionary with one key per state/transition ('send', 'TX', ...).
+ Each element is in turn a dict with the following elements:
+ - isa: 'state' or 'transition'
+ - power: list of mean power measurements in µW
+ - duration: list of durations in µs
+ - power_std: list of stddev of power per state/transition
+ - energy: consumed energy (power*duration) in pJ
+ - paramkeys: list of parameter names in each measurement (-> list of lists)
+ - param: list of parameter values in each measurement (-> list of lists)
+ - attributes: list of keys that should be analyzed,
+ e.g. ['power', 'duration']
+ additionally, only if isa == 'transition':
+ - timeout: list of duration of previous state in µs
+ - rel_energy_prev: transition energy relative to previous state mean power in pJ
+ - rel_energy_next: transition energy relative to next state mean power in pJ
+ """
+ arg_count = dict()
+ by_name = dict()
+ parameter_names = sorted(traces[0]["trace"][0]["parameter"].keys())
+ for run in traces:
+ if run["id"] not in ignore_trace_indexes:
+ for elem in run["trace"]:
+ if (
+ elem["isa"] == "transition"
+ and not elem["name"] in arg_count
+ and "args" in elem
+ ):
+ arg_count[elem["name"]] = len(elem["args"])
+ if elem["name"] != "UNINITIALIZED":
+ _add_trace_data_to_aggregate(by_name, elem["name"], elem)
+ for elem in by_name.values():
+ for key in elem["attributes"]:
+ elem[key] = np.array(elem[key])
+ return by_name, parameter_names, arg_count
+
+
+class EnergyTraceLog:
+ """
+ EnergyTrace log loader for DFA traces.
+
+ Expects an EnergyTrace log file generated via msp430-etv / energytrace-util
+ and a dfatool-generated benchmark. An EnergyTrace log consits of a series
+ of measurements. Each measurement has a timestamp, mean current, voltage,
+ and cumulative energy since start of measurement. Each transition is
+ preceded by a Code128 barcode embedded into the energy consumption by
+ toggling a LED.
+
+ Note that the baseline power draw of board and peripherals is not subtracted
+ at the moment.
+ """
+
+ def __init__(
+ self,
+ voltage: float,
+ state_duration: int,
+ transition_names: list,
+ with_traces=False,
+ ):
+ """
+ Create a new EnergyTraceLog object.
+
+ :param voltage: supply voltage [V], usually 3.3 V
+ :param state_duration: state duration [ms]
+ :param transition_names: list of transition names in PTA transition order.
+ Needed to map barcode synchronization numbers to transitions.
+ """
+ self.voltage = voltage
+ self.state_duration = state_duration * 1e-3
+ self.transition_names = transition_names
+ self.with_traces = with_traces
+ self.errors = list()
+
+ # TODO auto-detect
+ self.led_power = 10e-3
+
+ # multipass/include/object/ptalog.h#startTransition
+ self.module_duration = 5e-3
+
+ # multipass/include/object/ptalog.h#startTransition
+ self.quiet_zone_duration = 60e-3
+
+ # TODO auto-detect?
+ # Note that we consider barcode duration after start, so only the
+ # quiet zone -after- the code is relevant
+ self.min_barcode_duration = 57 * self.module_duration + self.quiet_zone_duration
+ self.max_barcode_duration = 68 * self.module_duration + self.quiet_zone_duration
+
+ def load_data(self, log_data):
+ """
+ Load log data (raw energytrace .txt file, one line per event).
+
+ :param log_data: raw energytrace log file in 4-column .txt format
+ """
+
+ if not zbar_available:
+ logger.error("zbar module is not available")
+ self.errors.append(
+ 'zbar module is not available. Try "apt install python3-zbar"'
+ )
+ return list()
+
+ lines = log_data.decode("ascii").split("\n")
+ data_count = sum(map(lambda x: len(x) > 0 and x[0] != "#", lines))
+ data_lines = filter(lambda x: len(x) > 0 and x[0] != "#", lines)
+
+ data = np.empty((data_count, 4))
+
+ for i, line in enumerate(data_lines):
+ fields = line.split(" ")
+ if len(fields) == 4:
+ timestamp, current, voltage, total_energy = map(int, fields)
+ elif len(fields) == 5:
+ # cpustate = fields[0]
+ timestamp, current, voltage, total_energy = map(int, fields[1:])
+ else:
+ raise RuntimeError('cannot parse line "{}"'.format(line))
+ data[i] = [timestamp, current, voltage, total_energy]
+
+ self.interval_start_timestamp = data[:-1, 0] * 1e-6
+ self.interval_duration = (data[1:, 0] - data[:-1, 0]) * 1e-6
+ self.interval_power = ((data[1:, 3] - data[:-1, 3]) * 1e-9) / (
+ (data[1:, 0] - data[:-1, 0]) * 1e-6
+ )
+
+ m_duration_us = data[-1, 0] - data[0, 0]
+
+ self.sample_rate = data_count / (m_duration_us * 1e-6)
+
+ logger.debug(
+ "got {} samples with {} seconds of log data ({} Hz)".format(
+ data_count, m_duration_us * 1e-6, self.sample_rate
+ )
+ )
+
+ return (
+ self.interval_start_timestamp,
+ self.interval_duration,
+ self.interval_power,
+ )
+
+ def ts_to_index(self, timestamp):
+ """
+ Convert timestamp in seconds to interval_start_timestamp / interval_duration / interval_power index.
+
+ Returns the index of the interval which timestamp is part of.
+ """
+ return self._ts_to_index(timestamp, 0, len(self.interval_start_timestamp))
+
+ def _ts_to_index(self, timestamp, left_index, right_index):
+ if left_index == right_index:
+ return left_index
+ if left_index + 1 == right_index:
+ return left_index
+
+ mid_index = left_index + (right_index - left_index) // 2
+
+ # I'm feeling lucky
+ if (
+ timestamp > self.interval_start_timestamp[mid_index]
+ and timestamp
+ <= self.interval_start_timestamp[mid_index]
+ + self.interval_duration[mid_index]
+ ):
+ return mid_index
+
+ if timestamp <= self.interval_start_timestamp[mid_index]:
+ return self._ts_to_index(timestamp, left_index, mid_index)
+
+ return self._ts_to_index(timestamp, mid_index, right_index)
+
+ def analyze_states(self, traces, offline_index: int):
+ u"""
+ Split log data into states and transitions and return duration, energy, and mean power for each element.
+
+ :param traces: expected traces, needed to synchronize with the measurement.
+ traces is a list of runs, traces[*]['trace'] is a single run
+ (i.e. a list of states and transitions, starting with a transition
+ and ending with a state).
+ :param offline_index: This function uses traces[*]['trace'][*]['online_aggregates']['duration'][offline_index] to find sync codes
+
+ :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
+ :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
+ :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
+
+ :returns: maybe returns list of states and transitions, both starting andending with a state.
+ Each element is a dict containing:
+ * `isa`: 'state' or 'transition'
+ * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
+ * `raw_mean`: Mittelwert der Rohwerte
+ * `raw_std`: Standardabweichung der Rohwerte
+ * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
+ * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ * `us`: Dauer
+ if isa == 'transition, it also contains:
+ * `timeout`: Dauer des vorherigen Zustands
+ * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
+ * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
+ """
+
+ first_sync = self.find_first_sync()
+
+ energy_trace = list()
+
+ expected_transitions = list()
+ for trace_number, trace in enumerate(traces):
+ for state_or_transition_number, state_or_transition in enumerate(
+ trace["trace"]
+ ):
+ if state_or_transition["isa"] == "transition":
+ try:
+ expected_transitions.append(
+ (
+ state_or_transition["name"],
+ state_or_transition["online_aggregates"]["duration"][
+ offline_index
+ ]
+ * 1e-6,
+ )
+ )
+ except IndexError:
+ self.errors.append(
+ 'Entry #{} ("{}") in trace #{} has no duration entry for offline_index/repeat_id {}'.format(
+ state_or_transition_number,
+ state_or_transition["name"],
+ trace_number,
+ offline_index,
+ )
+ )
+ return energy_trace
+
+ next_barcode = first_sync
+
+ for name, duration in expected_transitions:
+ bc, start, stop, end = self.find_barcode(next_barcode)
+ if bc is None:
+ logger.error('did not find transition "{}"'.format(name))
+ break
+ next_barcode = end + self.state_duration + duration
+ logger.debug(
+ '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
+ offline_index, bc, start, stop, end
+ )
+ )
+ if bc != name:
+ logger.error('mismatch: expected "{}", got "{}"'.format(name, bc))
+ logger.debug(
+ "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
+ offline_index, end, end + duration
+ )
+ )
+
+ transition_start_index = self.ts_to_index(end)
+ transition_done_index = self.ts_to_index(end + duration) + 1
+ state_start_index = transition_done_index
+ state_done_index = (
+ self.ts_to_index(end + duration + self.state_duration) + 1
+ )
+
+ logger.debug(
+ "{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format(
+ offline_index,
+ transition_start_index / self.sample_rate,
+ transition_done_index / self.sample_rate,
+ )
+ )
+
+ transition_power_W = self.interval_power[
+ transition_start_index:transition_done_index
+ ]
+
+ transition = {
+ "isa": "transition",
+ "W_mean": np.mean(transition_power_W),
+ "W_std": np.std(transition_power_W),
+ "s": duration,
+ "s_coarse": self.interval_start_timestamp[transition_done_index]
+ - self.interval_start_timestamp[transition_start_index],
+ }
+
+ if self.with_traces:
+ transition["uW"] = transition_power_W * 1e6
+
+ energy_trace.append(transition)
+
+ if len(energy_trace) > 1:
+ energy_trace[-1]["W_mean_delta_prev"] = (
+ energy_trace[-1]["W_mean"] - energy_trace[-2]["W_mean"]
+ )
+
+ state_power_W = self.interval_power[state_start_index:state_done_index]
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(state_power_W),
+ "W_std": np.std(state_power_W),
+ "s": self.state_duration,
+ "s_coarse": self.interval_start_timestamp[state_done_index]
+ - self.interval_start_timestamp[state_start_index],
+ }
+
+ if self.with_traces:
+ state["uW"] = state_power_W * 1e6
+
+ energy_trace.append(state)
+
+ energy_trace[-2]["W_mean_delta_next"] = (
+ energy_trace[-2]["W_mean"] - energy_trace[-1]["W_mean"]
+ )
+
+ expected_transition_count = len(expected_transitions)
+ recovered_transition_ount = len(energy_trace) // 2
+
+ if expected_transition_count != recovered_transition_ount:
+ self.errors.append(
+ "Expected {:d} transitions, got {:d}".format(
+ expected_transition_count, recovered_transition_ount
+ )
+ )
+
+ return energy_trace
+
+ def find_first_sync(self):
+ # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
+ sync_threshold_power = (
+ np.median(self.interval_power[: int(3 * self.sample_rate)])
+ + self.led_power / 3
+ )
+ for i, ts in enumerate(self.interval_start_timestamp):
+ if ts > 2 and self.interval_power[i] > sync_threshold_power:
+ return self.interval_start_timestamp[i - 300]
+ return None
+
+ def find_barcode(self, start_ts):
+ """
+ Return absolute position and content of the next barcode following `start_ts`.
+
+ :param interval_ts: list of start timestamps (one per measurement interval) [s]
+ :param interval_power: mean power per measurement interval [W]
+ :param start_ts: timestamp at which to start looking for a barcode [s]
+ """
+
+ for i, ts in enumerate(self.interval_start_timestamp):
+ if ts >= start_ts:
+ start_position = i
+ break
+
+ # Lookaround: 100 ms in both directions
+ lookaround = int(0.1 * self.sample_rate)
+
+ # LED Power is approx. self.led_power W, use self.led_power/2 W above surrounding median as threshold
+ sync_threshold_power = (
+ np.median(
+ self.interval_power[
+ start_position - lookaround : start_position + lookaround
+ ]
+ )
+ + self.led_power / 3
+ )
+
+ logger.debug(
+ "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
+ start_ts, sync_threshold_power * 1e3
+ )
+ )
+
+ sync_area_start = None
+ sync_start_ts = None
+ sync_area_end = None
+ sync_end_ts = None
+ for i, ts in enumerate(self.interval_start_timestamp):
+ if (
+ sync_area_start is None
+ and ts >= start_ts
+ and self.interval_power[i] > sync_threshold_power
+ ):
+ sync_area_start = i - 300
+ sync_start_ts = ts
+ if (
+ sync_area_start is not None
+ and sync_area_end is None
+ and ts > sync_start_ts + self.min_barcode_duration
+ and (
+ ts > sync_start_ts + self.max_barcode_duration
+ or abs(sync_threshold_power - self.interval_power[i])
+ > self.led_power
+ )
+ ):
+ sync_area_end = i
+ sync_end_ts = ts
+ break
+
+ barcode_data = self.interval_power[sync_area_start:sync_area_end]
+
+ logger.debug(
+ "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
+ sync_start_ts, sync_end_ts, len(barcode_data)
+ )
+ )
+
+ bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)
+
+ if bc is None:
+ return None, None, None, None
+
+ start_ts = self.interval_start_timestamp[sync_area_start + start]
+ stop_ts = self.interval_start_timestamp[sync_area_start + stop]
+
+ end_ts = (
+ stop_ts + self.module_duration * padding_bits + self.quiet_zone_duration
+ )
+
+ # barcode content, barcode start timestamp, barcode stop timestamp, barcode end (stop + padding) timestamp
+ return bc, start_ts, stop_ts, end_ts
+
+ def find_barcode_in_power_data(self, barcode_data):
+
+ min_power = np.min(barcode_data)
+ max_power = np.max(barcode_data)
+
+ # zbar seems to be confused by measurement (and thus image) noise
+ # inside of barcodes. As our barcodes are only 1px high, this is
+ # likely not trivial to fix.
+ # -> Create a black and white (not grayscale) image to avoid this.
+ # Unfortunately, this decreases resilience against background noise
+ # (e.g. a not-exactly-idle peripheral device or CPU interrupts).
+ image_data = np.around(
+ 1 - ((barcode_data - min_power) / (max_power - min_power))
+ )
+ image_data *= 255
+
+ # zbar only returns the complete barcode position if it is at least
+ # two pixels high. For a 1px barcode, it only returns its right border.
+
+ width = len(image_data)
+ height = 2
+
+ image_data = bytes(map(int, image_data)) * height
+
+ # img = Image.frombytes('L', (width, height), image_data).resize((width, 100))
+ # img.save('/tmp/test-{}.png'.format(os.getpid()))
+
+ zbimg = zbar.Image(width, height, "Y800", image_data)
+ scanner = zbar.ImageScanner()
+ scanner.parse_config("enable")
+
+ if scanner.scan(zbimg):
+ (sym,) = zbimg.symbols
+ content = sym.data
+ try:
+ sym_start = sym.location[1][0]
+ except IndexError:
+ sym_start = 0
+ sym_end = sym.location[0][0]
+
+ match = re.fullmatch(r"T(\d+)", content)
+ if match:
+ content = self.transition_names[int(match.group(1))]
+
+ # PTALog barcode generation operates on bytes, so there may be
+ # additional non-barcode padding (encoded as LED off / image white).
+ # Calculate the amount of extra bits to determine the offset until
+ # the transition starts.
+ padding_bits = len(Code128(sym.data, charset="B").modules) % 8
+
+ # sym_start leaves out the first two bars, but we don't do anything about that here
+ # sym_end leaves out the last three bars, each of which is one padding bit long.
+ # as a workaround, we unconditionally increment padding_bits by three.
+ padding_bits += 3
+
+ return content, sym_start, sym_end, padding_bits
+ else:
+ logger.warning("unable to find barcode")
+ return None, None, None, None
+
+
+class MIMOSA:
+ """
+ MIMOSA log loader for DFA traces with auto-calibration.
+
+ Expects a MIMOSA log file generated via dfatool and a dfatool-generated
+ benchmark. A MIMOSA log consists of a series of measurements. Each measurement
+ gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval.
+
+ There must be a calibration run consisting of at least two seconds with disconnected DUT,
+ two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at
+ the start. The first ten seconds of data are reserved for calbiration and must not contain
+ measurements, as trigger/buzzer signals are ignored in this time range.
+
+ Resulting data is a list of state/transition/state/transition/... measurements.
+ """
+
+ def __init__(self, voltage: float, shunt: int, with_traces=False):
+ """
+ Initialize MIMOSA loader for a specific voltage and shunt setting.
+
+ :param voltage: MIMOSA DUT supply voltage (V)
+ :para mshunt: MIMOSA Shunt (Ohms)
+ """
+ self.voltage = voltage
+ self.shunt = shunt
+ self.with_traces = with_traces
+ self.r1 = 984 # "1k"
+ self.r2 = 99013 # "100k"
+ self.errors = list()
+
+ def charge_to_current_nocal(self, charge):
+ u"""
+ Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.
+
+ :param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`
+
+ :returns: numpy array of mean currents (µA per 10µs)
+ """
+ ua_max = 1.836 / self.shunt * 1000000
+ ua_step = ua_max / 65535
+ return charge * ua_step
+
+ def _load_tf(self, tf):
+ u"""
+ Load MIMOSA log data from an open `tarfile` instance.
+
+ :param tf: `tarfile` instance
+
+ :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
+ """
+ num_bytes = tf.getmember("/tmp/mimosa//mimosa_scale_1.tmp").size
+ charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
+ triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
+ with tf.extractfile("/tmp/mimosa//mimosa_scale_1.tmp") as f:
+ content = f.read()
+ iterator = struct.iter_unpack("<I", content)
+ i = 0
+ for word in iterator:
+ charges[i] = word[0] >> 4
+ triggers[i] = (word[0] & 0x08) >> 3
+ i += 1
+ return charges, triggers
+
+ def load_data(self, raw_data):
+ u"""
+ Load MIMOSA log data from a MIMOSA log file passed as raw byte string
+
+ :param raw_data: MIMOSA log file, passed as raw byte string
+
+ :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
+ """
+ with io.BytesIO(raw_data) as data_object:
+ with tarfile.open(fileobj=data_object) as tf:
+ return self._load_tf(tf)
+
+ def load_file(self, filename):
+ u"""
+ Load MIMOSA log data from a MIMOSA log file
+
+ :param filename: MIMOSA log file
+
+ :returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
+ """
+ with tarfile.open(filename) as tf:
+ return self._load_tf(tf)
+
+ def currents_nocal(self, charges):
+ u"""
+ Convert charges (pJ per 10µs) to mean currents without accounting for calibration.
+
+ :param charges: numpy array of charges (pJ per 10µs)
+
+ :returns: numpy array of currents (mean µA per 10µs)"""
+ ua_max = 1.836 / self.shunt * 1000000
+ ua_step = ua_max / 65535
+ return charges.astype(np.double) * ua_step
+
+ def trigger_edges(self, triggers):
+ """
+ Return indexes of trigger edges (both 0->1 and 1->0) in log data.
+
+ Ignores the first 10 seconds, which are used for calibration and may
+ contain bogus triggers due to DUT resets.
+
+ :param triggers: trigger array (int, 0/1) as returned by load_data
+
+ :returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps)
+ """
+ trigidx = []
+
+ if len(triggers) < 1000000:
+ self.errors.append("MIMOSA log is too short")
+ return trigidx
+
+ prevtrig = triggers[999999]
+
+ # if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts),
+ # something went wrong and are unable to determine when the first
+ # transition starts.
+ if prevtrig != 0:
+ self.errors.append(
+ "Unable to find start of first transition (log starts with trigger == {} != 0)".format(
+ prevtrig
+ )
+ )
+
+ # if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
+ # it terminated in the middle of a transition -- meaning that it was not
+ # measured in its entirety.
+ if triggers[-1] != 0:
+ self.errors.append("Log ends during a transition".format(prevtrig))
+
+ # the device is reset for MIMOSA calibration in the first 10s and may
+ # send bogus interrupts -> bogus triggers
+ for i in range(1000000, triggers.shape[0]):
+ trig = triggers[i]
+ if trig != prevtrig:
+ # Due to MIMOSA's integrate-read-reset cycle, the charge/current
+ # interval belonging to this trigger comes two intervals (20µs) later
+ trigidx.append(i + 2)
+ prevtrig = trig
+ return trigidx
+
+ def calibration_edges(self, currents):
+ u"""
+ Return start/stop indexes of calibration measurements.
+
+ :param currents: uncalibrated currents as reported by MIMOSA. For best results,
+ it may help to use a running mean, like so:
+ `currents = running_mean(currents_nocal(..., 10))`
+
+ :returns: indices of calibration events in MIMOSA data:
+ (disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop)
+ indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on.
+ """
+ r1idx = 0
+ r2idx = 0
+ ua_r1 = self.voltage / self.r1 * 1000000
+ # first second may be bogus
+ for i in range(100000, len(currents)):
+ if r1idx == 0 and currents[i] > ua_r1 * 0.6:
+ r1idx = i
+ elif (
+ r1idx != 0
+ and r2idx == 0
+ and i > (r1idx + 180000)
+ and currents[i] < ua_r1 * 0.4
+ ):
+ r2idx = i
+ # 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
+ # allow 5ms buffer in both directions to account for bouncing relais contacts
+ return (
+ r1idx - 180500,
+ r1idx - 500,
+ r1idx + 500,
+ r2idx - 500,
+ r2idx + 500,
+ r2idx + 180500,
+ )
+
+ def calibration_function(self, charges, cal_edges):
+ u"""
+ Calculate calibration function from previously determined calibration edges.
+
+ :param charges: raw charges from MIMOSA
+ :param cal_edges: calibration edges as returned by calibration_edges
+
+ :returns: (calibration_function, calibration_data):
+ calibration_function -- charge in pJ (float) -> current in uA (float).
+ Converts the amount of charge in a 10 µs interval to the
+ mean current during the same interval.
+ calibration_data -- dict containing the following keys:
+ edges -- calibration points in the log file, in µs
+ offset -- ...
+ offset2 -- ...
+ slope_low -- ...
+ slope_high -- ...
+ add_low -- ...
+ add_high -- ..
+ r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
+ r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
+ r1_err_uW -- mean error of uncalibrated data at 1 kOhm
+ r1_std_uW -- stddev at 1 kOhm
+ r2_err_uW -- mean error at 100 kOhm
+ r2_std_uW -- stddev at 100 kOhm
+ """
+ dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
+ if dis_start < 0:
+ dis_start = 0
+ chg_r0 = charges[dis_start:dis_end]
+ chg_r1 = charges[r1_start:r1_end]
+ chg_r2 = charges[r2_start:r2_end]
+ cal_0_mean = np.mean(chg_r0)
+ cal_r1_mean = np.mean(chg_r1)
+ cal_r2_mean = np.mean(chg_r2)
+
+ ua_r1 = self.voltage / self.r1 * 1000000
+ ua_r2 = self.voltage / self.r2 * 1000000
+
+ if cal_r2_mean > cal_0_mean:
+ b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
+ else:
+ logger.warning("0 uA == %.f uA during calibration" % (ua_r2))
+ b_lower = 0
+
+ b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
+
+ a_lower = -b_lower * cal_0_mean
+ a_upper = -b_upper * cal_r2_mean
+
+ if self.shunt == 680:
+ # R1 current is higher than shunt range -> only use R2 for calibration
+ def calfunc(charge):
+ if charge < cal_0_mean:
+ return 0
+ else:
+ return charge * b_lower + a_lower
+
+ else:
+
+ def calfunc(charge):
+ if charge < cal_0_mean:
+ return 0
+ if charge <= cal_r2_mean:
+ return charge * b_lower + a_lower
+ else:
+ return charge * b_upper + a_upper + ua_r2
+
+ caldata = {
+ "edges": [x * 10 for x in cal_edges],
+ "offset": cal_0_mean,
+ "offset2": cal_r2_mean,
+ "slope_low": b_lower,
+ "slope_high": b_upper,
+ "add_low": a_lower,
+ "add_high": a_upper,
+ "r0_err_uW": np.mean(self.currents_nocal(chg_r0)) * self.voltage,
+ "r0_std_uW": np.std(self.currents_nocal(chg_r0)) * self.voltage,
+ "r1_err_uW": (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
+ "r1_std_uW": np.std(self.currents_nocal(chg_r1)) * self.voltage,
+ "r2_err_uW": (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
+ "r2_std_uW": np.std(self.currents_nocal(chg_r2)) * self.voltage,
+ }
+
+ # print("if charge < %f : return 0" % cal_0_mean)
+ # print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
+ # print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
+
+ return calfunc, caldata
+
+ """
+ def calcgrad(self, currents, threshold):
+ grad = np.gradient(running_mean(currents * self.voltage, 10))
+ # len(grad) == len(currents) - 9
+ subst = []
+ lastgrad = 0
+ for i in range(len(grad)):
+ # minimum substate duration: 10ms
+ if np.abs(grad[i]) > threshold and i - lastgrad > 50:
+ # account for skew introduced by running_mean and current
+ # ramp slope (parasitic capacitors etc.)
+ subst.append(i+10)
+ lastgrad = i
+ if lastgrad != i:
+ subst.append(i+10)
+ return subst
+
+ # TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
+ # Sache nach noetiger threshold. postprocessing mit
+ # "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
+ # ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
+ # TODO bei substates / index foo den offset durch running_mean beachten
+ # TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
+ # uebergaenge dadurch?
+ def gradfoo(self, currents):
+ gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
+ gradmin = np.min(gradients)
+ gradmax = np.max(gradients)
+ threshold = np.mean([gradmin, gradmax])
+ gradidx = self.calcgrad(currents, threshold)
+ num_substates = 2
+ while len(gradidx) != num_substates:
+ if gradmax - gradmin < 0.1:
+ # We did our best
+ return threshold, gradidx
+ if len(gradidx) > num_substates:
+ gradmin = threshold
+ else:
+ gradmax = threshold
+ threshold = np.mean([gradmin, gradmax])
+ gradidx = self.calcgrad(currents, threshold)
+ return threshold, gradidx
+ """
+
+ def analyze_states(self, charges, trigidx, ua_func):
+ u"""
+ Split log data into states and transitions and return duration, energy, and mean power for each element.
+
+ :param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
+ :param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
+ :param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
+
+ :returns: list of states and transitions, both starting andending with a state.
+ Each element is a dict containing:
+ * `isa`: 'state' or 'transition'
+ * `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
+ * `raw_mean`: Mittelwert der Rohwerte
+ * `raw_std`: Standardabweichung der Rohwerte
+ * `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
+ * `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
+ * `us`: Dauer
+ if isa == 'transition, it also contains:
+ * `timeout`: Dauer des vorherigen Zustands
+ * `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
+ * `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
+ """
+ previdx = 0
+ is_state = True
+ iterdata = []
+
+ # The last state (between the last transition and end of file) may also
+ # be important. Pretend it ends when the log ends.
+ trigger_indices = trigidx.copy()
+ trigger_indices.append(len(charges))
+
+ for idx in trigger_indices:
+ range_raw = charges[previdx:idx]
+ range_ua = ua_func(range_raw)
+ substates = {}
+
+ if previdx != 0 and idx - previdx > 200:
+ thr, subst = 0, [] # self.gradfoo(range_ua)
+ if len(subst):
+ statelist = []
+ prevsubidx = 0
+ for subidx in subst:
+ statelist.append(
+ {
+ "duration": (subidx - prevsubidx) * 10,
+ "uW_mean": np.mean(
+ range_ua[prevsubidx:subidx] * self.voltage
+ ),
+ "uW_std": np.std(
+ range_ua[prevsubidx:subidx] * self.voltage
+ ),
+ }
+ )
+ prevsubidx = subidx
+ substates = {"threshold": thr, "states": statelist}
+
+ isa = "state"
+ if not is_state:
+ isa = "transition"
+
+ data = {
+ "isa": isa,
+ "clip_rate": np.mean(range_raw == 65535),
+ "raw_mean": np.mean(range_raw),
+ "raw_std": np.std(range_raw),
+ "uW_mean": np.mean(range_ua * self.voltage),
+ "uW_std": np.std(range_ua * self.voltage),
+ "us": (idx - previdx) * 10,
+ }
+
+ if self.with_traces:
+ data["uW"] = range_ua * self.voltage
+
+ if "states" in substates:
+ data["substates"] = substates
+ ssum = np.sum(list(map(lambda x: x["duration"], substates["states"])))
+ if ssum != data["us"]:
+ logger.warning("duration %d vs %d" % (data["us"], ssum))
+
+ if isa == "transition":
+ # subtract average power of previous state
+ # (that is, the state from which this transition originates)
+ data["uW_mean_delta_prev"] = data["uW_mean"] - iterdata[-1]["uW_mean"]
+ # placeholder to avoid extra cases in the analysis
+ data["uW_mean_delta_next"] = data["uW_mean"]
+ data["timeout"] = iterdata[-1]["us"]
+ elif len(iterdata) > 0:
+ # subtract average power of next state
+ # (the state into which this transition leads)
+ iterdata[-1]["uW_mean_delta_next"] = (
+ iterdata[-1]["uW_mean"] - data["uW_mean"]
+ )
+
+ iterdata.append(data)
+
+ previdx = idx
+ is_state = not is_state
+ return iterdata