summaryrefslogtreecommitdiff
path: root/lib/loader/dlog.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/loader/dlog.py')
-rw-r--r--lib/loader/dlog.py293
1 files changed, 293 insertions, 0 deletions
diff --git a/lib/loader/dlog.py b/lib/loader/dlog.py
new file mode 100644
index 0000000..b87a6bb
--- /dev/null
+++ b/lib/loader/dlog.py
@@ -0,0 +1,293 @@
+#!/usr/bin/env python3
+
+import io
+import numpy as np
+import struct
+import xml.etree.ElementTree as ET
+
+from bisect import bisect_right
+
+
+class DLogChannel:
+ def __init__(self, desc_tuple):
+ self.slot = desc_tuple[0]
+ self.smu = desc_tuple[1]
+ self.unit = desc_tuple[2]
+ self.data = None
+
+ def __repr__(self):
+ return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>"""
+
+
+class DLog:
+ def __init__(
+ self,
+ voltage: float,
+ state_duration: int,
+ with_traces=False,
+ skip_duration=None,
+ limit_duration=None,
+ ):
+ self.voltage = voltage
+ self.state_duration = state_duration
+ self.with_traces = with_traces
+ self.skip_duration = skip_duration
+ self.limit_duration = limit_duration
+ self.errors = list()
+
+ self.sync_min_duration = 0.7
+ # TODO auto-detect
+ self.sync_power = 10e-3
+
+ def load_data(self, content):
+ lines = []
+ line = ""
+ with io.BytesIO(content) as f:
+ while line != "</dlog>\n":
+ line = f.readline().decode()
+ lines.append(line)
+ xml_header = "".join(lines)
+ raw_header = f.read(8)
+ data_offset = f.tell()
+ raw_data = f.read()
+
+ xml_header = xml_header.replace("1ua>", "X1ua>")
+ xml_header = xml_header.replace("2ua>", "X2ua>")
+ dlog = ET.fromstring(xml_header)
+ channels = []
+
+ for channel in dlog.findall("channel"):
+ channel_id = int(channel.get("id"))
+ sense_curr = channel.find("sense_curr").text
+ sense_volt = channel.find("sense_volt").text
+ model = channel.find("ident").find("model").text
+ if sense_volt == "1":
+ channels.append((channel_id, model, "V"))
+ if sense_curr == "1":
+ channels.append((channel_id, model, "A"))
+
+ num_channels = len(channels)
+
+ self.channels = list(map(DLogChannel, channels))
+ self.interval = float(dlog.find("frame").find("tint").text)
+ self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text)
+ self.planned_duration = int(dlog.find("frame").find("time").text)
+ self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels))
+
+ if self.sense_minmax:
+ raise RuntimeError(
+ "DLog files with 'Log Min/Max' enabled are not supported yet"
+ )
+
+ self.timestamps = np.linspace(
+ 0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels))
+ )
+
+ if (
+ self.skip_duration is not None
+ and self.observed_duration >= self.skip_duration
+ ):
+ start_offset = 0
+ for i, ts in enumerate(self.timestamps):
+ if ts >= self.skip_duration:
+ start_offset = i
+ break
+ self.timestamps = self.timestamps[start_offset:]
+ raw_data = raw_data[start_offset * 4 * num_channels :]
+
+ if (
+ self.limit_duration is not None
+ and self.observed_duration > self.limit_duration
+ ):
+ stop_offset = len(self.timestamps) - 1
+ for i, ts in enumerate(self.timestamps):
+ if ts > self.limit_duration:
+ stop_offset = i
+ break
+ self.timestamps = self.timestamps[:stop_offset]
+ self.observed_duration = self.timestamps[-1]
+ raw_data = raw_data[: stop_offset * 4 * num_channels]
+
+ self.data = np.ndarray(
+ shape=(num_channels, int(len(raw_data) / (4 * num_channels))),
+ dtype=np.float32,
+ )
+
+ iterator = struct.iter_unpack(">f", raw_data)
+ channel_offset = 0
+ measurement_offset = 0
+ for value in iterator:
+ if value[0] < -1e6 or value[0] > 1e6:
+ print(
+ f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0."
+ )
+ self.data[channel_offset, measurement_offset] = 0
+ else:
+ self.data[channel_offset, measurement_offset] = value[0]
+ if channel_offset + 1 == num_channels:
+ channel_offset = 0
+ measurement_offset += 1
+ else:
+ channel_offset += 1
+
+ # An SMU has four slots
+ self.slots = [dict(), dict(), dict(), dict()]
+
+ for i, channel in enumerate(self.channels):
+ channel.data = self.data[i]
+ self.slots[channel.slot - 1][channel.unit] = channel
+
+ assert "A" in self.slots[0]
+ self.data = self.slots[0]["A"].data
+
+ def observed_duration_equals_expectation(self):
+ return int(self.observed_duration) == self.planned_duration
+
+ # very similar to DataProcessor.getStatesdfatool
+ def analyze_states(self, expected_trace, repeat_id):
+ sync_start = None
+ sync_timestamps = list()
+ above_count = 0
+ below_count = 0
+ for i, timestamp in enumerate(self.timestamps):
+ power = self.voltage * self.data[i]
+ if power > self.sync_power:
+ above_count += 1
+ below_count = 0
+ else:
+ above_count = 0
+ below_count += 1
+
+ if above_count > 2 and sync_start is None:
+ sync_start = timestamp
+ elif below_count > 2 and sync_start is not None:
+ if timestamp - sync_start > self.sync_min_duration:
+ sync_end = timestamp
+ sync_timestamps.append((sync_start, sync_end))
+ sync_start = None
+ print(sync_timestamps)
+
+ if len(sync_timestamps) != 3:
+ self.errors.append(
+ f"Found {len(sync_timestamps)} synchronization pulses, expected three."
+ )
+ self.errors.append(f"Synchronization pulses == {sync_timestamps}")
+ return list()
+
+ start_ts = sync_timestamps[0][1]
+ end_ts = sync_timestamps[1][0]
+
+ # start and end of first state
+ online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
+
+ # remaining events from the end of the first transition (start of second state) to the end of the last observed state
+ for trace in expected_trace:
+ for word in trace["trace"]:
+ online_timestamps.append(
+ online_timestamps[-1]
+ + word["online_aggregates"]["duration"][repeat_id]
+ )
+
+ online_timestamps = np.array(online_timestamps) * 1e-6
+ online_timestamps = (
+ online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts
+ )
+
+ trigger_edges = list()
+ for ts in online_timestamps:
+ trigger_edges.append(bisect_right(self.timestamps, ts))
+
+ energy_trace = list()
+
+ for i in range(2, len(online_timestamps), 2):
+ prev_state_start_index = trigger_edges[i - 2]
+ prev_state_stop_index = trigger_edges[i - 1]
+ transition_start_index = trigger_edges[i - 1]
+ transition_stop_index = trigger_edges[i]
+ state_start_index = trigger_edges[i]
+ state_stop_index = trigger_edges[i + 1]
+
+ # If a transition takes less time than the measurement interval, its start and stop index may be the same.
+ # In this case, self.data[transition_start_index] is the only data point affected by the transition.
+ # We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
+ # to increment transition_stop_index by 1 to end at self.data[transition_start_index]
+ # (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
+ if transition_stop_index == transition_start_index:
+ transition_stop_index += 1
+
+ prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
+ transition_duration = online_timestamps[i] - online_timestamps[i - 1]
+ state_duration = online_timestamps[i + 1] - online_timestamps[i]
+
+ # some states are followed by a UART dump of log data. This causes an increase in CPU energy
+ # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
+ # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
+ # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
+ # instead of high-precision sync data
+ if (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ > self.state_duration
+ ):
+ prev_state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[prev_state_start_index] + self.state_duration,
+ )
+ prev_state_duration = (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ )
+
+ if (
+ self.timestamps[state_stop_index] - self.timestamps[state_start_index]
+ > self.state_duration
+ ):
+ state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[state_start_index] + self.state_duration,
+ )
+ state_duration = (
+ self.timestamps[state_stop_index]
+ - self.timestamps[state_start_index]
+ )
+
+ prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
+
+ transition_timestamps = self.timestamps[
+ transition_start_index:transition_stop_index
+ ]
+ transition_power = self.data[transition_start_index:transition_stop_index]
+
+ state_timestamps = self.timestamps[state_start_index:state_stop_index]
+ state_power = self.data[state_start_index:state_stop_index]
+
+ transition = {
+ "isa": "transition",
+ "W_mean": np.mean(transition_power),
+ "W_std": np.std(transition_power),
+ "s": transition_duration,
+ }
+ if self.with_traces:
+ transition["plot"] = (
+ transition_timestamps - transition_timestamps[0],
+ transition_power,
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(state_power),
+ "W_std": np.std(state_power),
+ "s": state_duration,
+ }
+ if self.with_traces:
+ state["plot"] = (state_timestamps - state_timestamps[0], state_power)
+
+ transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
+ prev_state_power
+ )
+ transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
+
+ energy_trace.append(transition)
+ energy_trace.append(state)
+
+ return energy_trace