diff options
Diffstat (limited to 'lib/loader/dlog.py')
-rw-r--r-- | lib/loader/dlog.py | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/lib/loader/dlog.py b/lib/loader/dlog.py new file mode 100644 index 0000000..b87a6bb --- /dev/null +++ b/lib/loader/dlog.py @@ -0,0 +1,293 @@ +#!/usr/bin/env python3 + +import io +import numpy as np +import struct +import xml.etree.ElementTree as ET + +from bisect import bisect_right + + +class DLogChannel: + def __init__(self, desc_tuple): + self.slot = desc_tuple[0] + self.smu = desc_tuple[1] + self.unit = desc_tuple[2] + self.data = None + + def __repr__(self): + return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>""" + + +class DLog: + def __init__( + self, + voltage: float, + state_duration: int, + with_traces=False, + skip_duration=None, + limit_duration=None, + ): + self.voltage = voltage + self.state_duration = state_duration + self.with_traces = with_traces + self.skip_duration = skip_duration + self.limit_duration = limit_duration + self.errors = list() + + self.sync_min_duration = 0.7 + # TODO auto-detect + self.sync_power = 10e-3 + + def load_data(self, content): + lines = [] + line = "" + with io.BytesIO(content) as f: + while line != "</dlog>\n": + line = f.readline().decode() + lines.append(line) + xml_header = "".join(lines) + raw_header = f.read(8) + data_offset = f.tell() + raw_data = f.read() + + xml_header = xml_header.replace("1ua>", "X1ua>") + xml_header = xml_header.replace("2ua>", "X2ua>") + dlog = ET.fromstring(xml_header) + channels = [] + + for channel in dlog.findall("channel"): + channel_id = int(channel.get("id")) + sense_curr = channel.find("sense_curr").text + sense_volt = channel.find("sense_volt").text + model = channel.find("ident").find("model").text + if sense_volt == "1": + channels.append((channel_id, model, "V")) + if sense_curr == "1": + channels.append((channel_id, model, "A")) + + num_channels = len(channels) + + self.channels = list(map(DLogChannel, channels)) + self.interval = float(dlog.find("frame").find("tint").text) + self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text) + self.planned_duration = int(dlog.find("frame").find("time").text) + self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels)) + + if self.sense_minmax: + raise RuntimeError( + "DLog files with 'Log Min/Max' enabled are not supported yet" + ) + + self.timestamps = np.linspace( + 0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels)) + ) + + if ( + self.skip_duration is not None + and self.observed_duration >= self.skip_duration + ): + start_offset = 0 + for i, ts in enumerate(self.timestamps): + if ts >= self.skip_duration: + start_offset = i + break + self.timestamps = self.timestamps[start_offset:] + raw_data = raw_data[start_offset * 4 * num_channels :] + + if ( + self.limit_duration is not None + and self.observed_duration > self.limit_duration + ): + stop_offset = len(self.timestamps) - 1 + for i, ts in enumerate(self.timestamps): + if ts > self.limit_duration: + stop_offset = i + break + self.timestamps = self.timestamps[:stop_offset] + self.observed_duration = self.timestamps[-1] + raw_data = raw_data[: stop_offset * 4 * num_channels] + + self.data = np.ndarray( + shape=(num_channels, int(len(raw_data) / (4 * num_channels))), + dtype=np.float32, + ) + + iterator = struct.iter_unpack(">f", raw_data) + channel_offset = 0 + measurement_offset = 0 + for value in iterator: + if value[0] < -1e6 or value[0] > 1e6: + print( + f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0." + ) + self.data[channel_offset, measurement_offset] = 0 + else: + self.data[channel_offset, measurement_offset] = value[0] + if channel_offset + 1 == num_channels: + channel_offset = 0 + measurement_offset += 1 + else: + channel_offset += 1 + + # An SMU has four slots + self.slots = [dict(), dict(), dict(), dict()] + + for i, channel in enumerate(self.channels): + channel.data = self.data[i] + self.slots[channel.slot - 1][channel.unit] = channel + + assert "A" in self.slots[0] + self.data = self.slots[0]["A"].data + + def observed_duration_equals_expectation(self): + return int(self.observed_duration) == self.planned_duration + + # very similar to DataProcessor.getStatesdfatool + def analyze_states(self, expected_trace, repeat_id): + sync_start = None + sync_timestamps = list() + above_count = 0 + below_count = 0 + for i, timestamp in enumerate(self.timestamps): + power = self.voltage * self.data[i] + if power > self.sync_power: + above_count += 1 + below_count = 0 + else: + above_count = 0 + below_count += 1 + + if above_count > 2 and sync_start is None: + sync_start = timestamp + elif below_count > 2 and sync_start is not None: + if timestamp - sync_start > self.sync_min_duration: + sync_end = timestamp + sync_timestamps.append((sync_start, sync_end)) + sync_start = None + print(sync_timestamps) + + if len(sync_timestamps) != 3: + self.errors.append( + f"Found {len(sync_timestamps)} synchronization pulses, expected three." + ) + self.errors.append(f"Synchronization pulses == {sync_timestamps}") + return list() + + start_ts = sync_timestamps[0][1] + end_ts = sync_timestamps[1][0] + + # start and end of first state + online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]] + + # remaining events from the end of the first transition (start of second state) to the end of the last observed state + for trace in expected_trace: + for word in trace["trace"]: + online_timestamps.append( + online_timestamps[-1] + + word["online_aggregates"]["duration"][repeat_id] + ) + + online_timestamps = np.array(online_timestamps) * 1e-6 + online_timestamps = ( + online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts + ) + + trigger_edges = list() + for ts in online_timestamps: + trigger_edges.append(bisect_right(self.timestamps, ts)) + + energy_trace = list() + + for i in range(2, len(online_timestamps), 2): + prev_state_start_index = trigger_edges[i - 2] + prev_state_stop_index = trigger_edges[i - 1] + transition_start_index = trigger_edges[i - 1] + transition_stop_index = trigger_edges[i] + state_start_index = trigger_edges[i] + state_stop_index = trigger_edges[i + 1] + + # If a transition takes less time than the measurement interval, its start and stop index may be the same. + # In this case, self.data[transition_start_index] is the only data point affected by the transition. + # We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need + # to increment transition_stop_index by 1 to end at self.data[transition_start_index] + # (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index]) + if transition_stop_index == transition_start_index: + transition_stop_index += 1 + + prev_state_duration = online_timestamps[i + 1] - online_timestamps[i] + transition_duration = online_timestamps[i] - online_timestamps[i - 1] + state_duration = online_timestamps[i + 1] - online_timestamps[i] + + # some states are followed by a UART dump of log data. This causes an increase in CPU energy + # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results. + # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions. + # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data + # instead of high-precision sync data + if ( + self.timestamps[prev_state_stop_index] + - self.timestamps[prev_state_start_index] + > self.state_duration + ): + prev_state_stop_index = bisect_right( + self.timestamps, + self.timestamps[prev_state_start_index] + self.state_duration, + ) + prev_state_duration = ( + self.timestamps[prev_state_stop_index] + - self.timestamps[prev_state_start_index] + ) + + if ( + self.timestamps[state_stop_index] - self.timestamps[state_start_index] + > self.state_duration + ): + state_stop_index = bisect_right( + self.timestamps, + self.timestamps[state_start_index] + self.state_duration, + ) + state_duration = ( + self.timestamps[state_stop_index] + - self.timestamps[state_start_index] + ) + + prev_state_power = self.data[prev_state_start_index:prev_state_stop_index] + + transition_timestamps = self.timestamps[ + transition_start_index:transition_stop_index + ] + transition_power = self.data[transition_start_index:transition_stop_index] + + state_timestamps = self.timestamps[state_start_index:state_stop_index] + state_power = self.data[state_start_index:state_stop_index] + + transition = { + "isa": "transition", + "W_mean": np.mean(transition_power), + "W_std": np.std(transition_power), + "s": transition_duration, + } + if self.with_traces: + transition["plot"] = ( + transition_timestamps - transition_timestamps[0], + transition_power, + ) + + state = { + "isa": "state", + "W_mean": np.mean(state_power), + "W_std": np.std(state_power), + "s": state_duration, + } + if self.with_traces: + state["plot"] = (state_timestamps - state_timestamps[0], state_power) + + transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean( + prev_state_power + ) + transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"] + + energy_trace.append(transition) + energy_trace.append(state) + + return energy_trace |