summaryrefslogtreecommitdiff
path: root/lib/model.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/model.py')
-rw-r--r--lib/model.py19
1 files changed, 8 insertions, 11 deletions
diff --git a/lib/model.py b/lib/model.py
index 85cda71..829ca37 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -309,15 +309,15 @@ class AnalyticModel:
measures = regression_measures(predicted_data, elem[attribute])
detailed_results[name][attribute] = measures
- return {"by_name": detailed_results}
+ return detailed_results
def to_dref(self, static_quality, lut_quality, model_quality) -> dict:
ret = dict()
for name in self.names:
for attr_name, attr in self.attr_by_name[name].items():
- e_static = static_quality["by_name"][name][attr_name]
- e_lut = lut_quality["by_name"][name][attr_name]
- e_model = model_quality["by_name"][name][attr_name]
+ e_static = static_quality[name][attr_name]
+ e_lut = lut_quality[name][attr_name]
+ e_model = model_quality[name][attr_name]
unit = None
if "power" in attr.attr:
unit = r"\micro\watt"
@@ -791,9 +791,7 @@ class PTAModel(AnalyticModel):
if pta is None:
pta = PTA(self.states, parameters=self._parameter_names)
pta.update(
- param_info,
- static_error=static_quality["by_name"],
- function_error=analytic_quality["by_name"],
+ param_info, static_error=static_quality, function_error=analytic_quality
)
return pta.to_json()
@@ -812,7 +810,7 @@ class PTAModel(AnalyticModel):
"""
if ref is None:
ref = self.by_name
- detailed_results = super().assess(model_function, ref=ref)["by_name"]
+ detailed_results = super().assess(model_function, ref=ref)
for name, elem in sorted(ref.items()):
if elem["isa"] == "transition":
predicted_data = np.array(
@@ -831,7 +829,7 @@ class PTAModel(AnalyticModel):
)
detailed_results[name]["energy_Pt"] = measures
- return {"by_name": detailed_results}
+ return detailed_results
def assess_states(
self, model_function, model_attribute="power", distribution: dict = None
@@ -861,8 +859,7 @@ class PTAModel(AnalyticModel):
sum(
map(
lambda x: np.square(
- model_quality["by_name"][x][model_attribute]["mae"]
- * distribution[x]
+ model_quality[x][model_attribute]["mae"] * distribution[x]
),
self.states,
)