summaryrefslogtreecommitdiff
path: root/lib/parameters.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/parameters.py')
-rw-r--r--lib/parameters.py130
1 files changed, 130 insertions, 0 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index e516926..238f496 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -7,6 +7,7 @@ from collections import OrderedDict
from copy import deepcopy
from multiprocessing import Pool
import dfatool.functions as df
+from .paramfit import ParamFit
from .utils import remove_index_from_tuple, is_numeric
from .utils import filter_aggregate_by_param, partition_by_param
@@ -723,3 +724,132 @@ class ModelAttribute:
if x.fit_success:
self.model_function = x
+
+ def build_dtree(self, parameters, data, with_function_leaves=False, threshold=100):
+ """
+ Build a Decision Tree on `param` / `data` for kconfig models.
+
+ :param this_symbols: parameter names
+ :param this_data: list of measurements. Each entry is a (param vector, mearusements vector) tuple.
+ param vector holds parameter values (same order as parameter names). mearuserements vector holds measurements.
+ :param data_index: Index in measurements vector to use for model generation. Default 0.
+ :param threshold: Return a StaticFunction leaf node if std(data[data_index]) < threshold. Default 100.
+
+ :returns: SplitFunction or StaticFunction
+ """
+ self.model_function = self._build_dtree(
+ parameters, data, with_function_leaves, threshold
+ )
+
+ def _build_dtree(
+ self, parameters, data, with_function_leaves=False, threshold=100, level=0
+ ):
+ """
+ Build a Decision Tree on `param` / `data` for kconfig models.
+
+ :param this_symbols: parameter names
+ :param this_data: list of measurements. Each entry is a (param vector, mearusements vector) tuple.
+ param vector holds parameter values (same order as parameter names). mearuserements vector holds measurements.
+ :param data_index: Index in measurements vector to use for model generation. Default 0.
+ :param threshold: Return a StaticFunction leaf node if std(data[data_index]) < threshold. Default 100.
+
+ :returns: SplitFunction or StaticFunction
+ """
+
+ # TODO remove data entries which are None (and remove corresponding parameters, too!)
+
+ parameter_names = self.param_names
+ if len(parameter_names) == 0 or np.std(data) < threshold:
+ return df.StaticFunction(np.mean(data))
+ # sf.value_error["std"] = np.std(data)
+
+ mean_stds = list()
+ for param_index, param in enumerate(parameter_names):
+
+ unique_values = list(set(map(lambda p: p[param_index], parameters)))
+
+ if None in unique_values:
+ # param is a choice and undefined in some configs. Do not split on it.
+ mean_stds.append(np.inf)
+ continue
+
+ if (
+ with_function_leaves
+ and len(unique_values) > 3
+ and all(map(lambda x: type(x) is int, unique_values))
+ ):
+ # param can be modeled as a function. Do not split on it.
+ mean_stds.append(np.inf)
+ continue
+
+ child_indexes = list()
+ for value in unique_values:
+ child_indexes.append(
+ list(
+ filter(
+ lambda i: parameters[i][param_index] == value,
+ range(len(parameters)),
+ )
+ )
+ )
+
+ if len(list(filter(len, child_indexes))) < 2:
+ # this param only has a single value. there's no point in splitting.
+ mean_stds.append(np.inf)
+ continue
+
+ children = list()
+ for child in child_indexes:
+ children.append(np.std(list(map(lambda i: data[i], child))))
+
+ if np.any(np.isnan(children)):
+ mean_stds.append(np.inf)
+ else:
+ mean_stds.append(np.mean(children))
+
+ if np.all(np.isinf(mean_stds)):
+ # all children have the same configuration. We shouldn't get here due to the threshold check above...
+ if with_function_leaves:
+ # try generating a function. if it fails, model_function is a StaticFunction.
+ ma = ModelAttribute("tmp", "tmp", data, parameters, self.param_names, 0)
+ ParamStats.compute_for_attr(ma)
+ paramfit = ParamFit(parallel=False)
+ for key, param, args, kwargs in ma.get_data_for_paramfit():
+ paramfit.enqueue(key, param, args, kwargs)
+ paramfit.fit()
+ ma.set_data_from_paramfit(paramfit)
+ return ma.model_function
+ else:
+ logging.warning(
+ f"While building DTree for configurations {parameters}: Children have identical configuration, but high stddev ({np.std(data)}). Falling back to Staticfunction"
+ )
+ return df.StaticFunction(np.mean(data))
+
+ symbol_index = np.argmin(mean_stds)
+ symbol = parameter_names[symbol_index]
+
+ unique_values = list(set(map(lambda p: p[symbol_index], parameters)))
+
+ child = dict()
+
+ for value in unique_values:
+ indexes = list(
+ filter(
+ lambda i: parameters[i][symbol_index] == value,
+ range(len(parameters)),
+ )
+ )
+ child_parameters = list(map(lambda i: parameters[i], indexes))
+ child_data = list(map(lambda i: data[i], indexes))
+ if len(child_data):
+ child[value] = self._build_dtree(
+ child_parameters,
+ child_data,
+ with_function_leaves,
+ threshold,
+ level + 1,
+ )
+
+ assert len(child.values()) >= 2
+
+ return df.SplitFunction(np.mean(data), symbol_index, child)