summaryrefslogtreecommitdiff
path: root/lib/parameters.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/parameters.py')
-rw-r--r--lib/parameters.py11
1 files changed, 3 insertions, 8 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index fa01804..1cad7a5 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -594,7 +594,6 @@ class ModelAttribute:
# The best model we have. May be Static, Split, or Param (and later perhaps Substate)
self.model_function = None
- self.model_info = None
def __repr__(self):
mean = np.mean(self.data)
@@ -605,7 +604,6 @@ class ModelAttribute:
"paramNames": self.param_names,
"argCount": self.arg_count,
"modelFunction": self.model_function.to_json(),
- "modelInfo": self.model_info.to_json(),
}
return ret
@@ -784,21 +782,19 @@ class ModelAttribute:
for param_value, child in child_by_param_value.items():
child.set_data_from_paramfit(paramfit, prefix + (param_value,))
function_child[param_value] = child.model_function
- info_child[param_value] = child.model_info
self.model_function = df.SplitFunction(split_param_index, function_child)
- self.model_info = df.SplitInfo(split_param_index, info_child)
def set_data_from_paramfit_this(self, paramfit, prefix):
fit_result = paramfit.get_result((self.name, self.attr) + prefix)
self.model_function = df.StaticFunction(self.median)
- self.model_info = df.StaticInfo(self.data)
if self.function_override is not None:
function_str = self.function_override
- x = df.AnalyticFunction(function_str, self.param_names, self.arg_count)
+ x = df.AnalyticFunction(
+ function_str, self.param_names, self.arg_count, fit_by_param=fit_result
+ )
x.fit(self.by_param)
if x.fit_success:
self.model_function = x
- self.model_info = df.AnalyticInfo(fit_result, x)
elif os.getenv("DFATOOL_NO_PARAM"):
pass
elif len(fit_result.keys()):
@@ -809,4 +805,3 @@ class ModelAttribute:
if x.fit_success:
self.model_function = x
- self.model_info = df.AnalyticInfo(fit_result, x)