summaryrefslogtreecommitdiff
path: root/lib/parameters.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/parameters.py')
-rw-r--r--lib/parameters.py23
1 files changed, 16 insertions, 7 deletions
diff --git a/lib/parameters.py b/lib/parameters.py
index dd435e6..0f23ef8 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -920,6 +920,7 @@ class ModelAttribute:
function_str,
self.param_names,
self.arg_count,
+ n_samples=self.data.shape[0],
# fit_by_param=fit_result,
)
x.fit(self.by_param)
@@ -1031,7 +1032,9 @@ class ModelAttribute:
logger.warning(
f"Cannot generate CART for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
- self.model_function = df.StaticFunction(np.mean(data))
+ self.model_function = df.StaticFunction(
+ np.mean(data), n_samples=len(data)
+ )
return
logger.debug("Fitting sklearn CART ...")
cart.fit(fit_parameters, data)
@@ -1065,7 +1068,9 @@ class ModelAttribute:
logger.warning(
f"Cannot run XGBoost for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
- self.model_function = df.StaticFunction(np.mean(data))
+ self.model_function = df.StaticFunction(
+ np.mean(data), n_samples=len(data)
+ )
return
xgb.fit(fit_parameters, np.reshape(data, (-1, 1)))
self.model_function = df.XGBoostFunction(
@@ -1090,14 +1095,18 @@ class ModelAttribute:
logger.warning(
f"Cannot generate LMT for {self.name} {self.attr} due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
)
- self.model_function = df.StaticFunction(np.mean(data))
+ self.model_function = df.StaticFunction(
+ np.mean(data), n_samples=len(data)
+ )
return
logger.debug("Fitting LMT ...")
try:
lmt.fit(fit_parameters, data)
except np.linalg.LinAlgError as e:
logger.error(f"LMT generation for {self.name} {self.attr} failed: {e}")
- self.model_function = df.StaticFunction(np.mean(data))
+ self.model_function = df.StaticFunction(
+ np.mean(data), n_samples=len(data)
+ )
return
logger.debug("Fitted LMT")
self.model_function = df.LMTFunction(
@@ -1156,7 +1165,7 @@ class ModelAttribute:
param_count = nonarg_count + self.arg_count
# TODO eigentlich muss threshold hier auf Basis der aktuellen Messdatenpartition neu berechnet werden
if param_count == 0 or np.std(data) <= threshold:
- return df.StaticFunction(np.mean(data))
+ return df.StaticFunction(np.mean(data), n_samples=len(data))
# sf.value_error["std"] = np.std(data)
loss = list()
@@ -1294,7 +1303,7 @@ class ModelAttribute:
paramfit.fit()
ma.set_data_from_paramfit(paramfit)
return ma.model_function
- return df.StaticFunction(np.mean(data))
+ return df.StaticFunction(np.mean(data), n_samples=len(data))
split_feasible = True
if loss_ignore_scalar:
@@ -1365,4 +1374,4 @@ class ModelAttribute:
assert len(child.values()) >= 2
- return df.SplitFunction(np.mean(data), symbol_index, child)
+ return df.SplitFunction(np.mean(data), symbol_index, child, n_samples=len(data))