diff options
Diffstat (limited to 'lib/plotter.py')
-rwxr-xr-x | lib/plotter.py | 113 |
1 files changed, 64 insertions, 49 deletions
diff --git a/lib/plotter.py b/lib/plotter.py index 30b5b82..b9d5c3e 100755 --- a/lib/plotter.py +++ b/lib/plotter.py @@ -4,69 +4,79 @@ import itertools import numpy as np import matplotlib.pyplot as plt import re -from matplotlib.patches import Polygon -from utils import flatten + def is_state(aggregate, name): """Return true if name is a state and not UNINITIALIZED.""" return aggregate[name]['isa'] == 'state' and name != 'UNINITIALIZED' + def plot_states(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key]['power']['static']) for key in keys] - boxplot(keys, data, 'Zustand', 'µW', modeldata = mdata) + boxplot(keys, data, 'Zustand', 'µW', modeldata=mdata) + def plot_transitions(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['rel_energies'] for key in keys] mdata = [int(model['transition'][key]['rel_energy']['static']) for key in keys] - boxplot(keys, data, 'Transition', 'pJ (rel)', modeldata = mdata) + boxplot(keys, data, 'Transition', 'pJ (rel)', modeldata=mdata) data = [aggregate[key]['energies'] for key in keys] mdata = [int(model['transition'][key]['energy']['static']) for key in keys] - boxplot(keys, data, 'Transition', 'pJ', modeldata = mdata) + boxplot(keys, data, 'Transition', 'pJ', modeldata=mdata) + def plot_states_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, data, 'Zustand', 'µs') + def plot_transitions_duration(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['durations'] for key in keys] boxplot(keys, data, 'Transition', 'µs') + def plot_transitions_timeout(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [aggregate[key]['timeouts'] for key in keys] boxplot(keys, data, 'Timeout', 'µs') + def plot_states_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, data, 'Zustand', '% Clipping') + def plot_transitions_clips(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'transition'] data = [np.array([100]) * aggregate[key]['clip_rate'] for key in keys] boxplot(keys, data, 'Transition', '% Clipping') + def plot_substate_thresholds(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if is_state(aggregate, key)] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, data, 'Zustand', 'substate threshold (mW/dmW)') + def plot_histogram(data): n, bins, patches = plt.hist(data, 1000, normed=1, facecolor='green', alpha=0.75) plt.show() + def plot_states_param(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['means'] for key in keys] mdata = [int(model['state'][key[0]]['power']['static']) for key in keys] - boxplot(keys, data, 'Transition', 'µW', modeldata = mdata) + boxplot(keys, data, 'Transition', 'µW', modeldata=mdata) -def plot_attribute(aggregate, attribute, attribute_unit = '', key_filter = lambda x: True, **kwargs): + +def plot_attribute(aggregate, attribute, attribute_unit='', key_filter=lambda x: True, **kwargs): """ Boxplot measurements of a single attribute according to the partitioning provided by aggregate. @@ -82,23 +92,26 @@ def plot_attribute(aggregate, attribute, attribute_unit = '', key_filter = lambd data = [aggregate[key][attribute] for key in keys] boxplot(keys, data, attribute, attribute_unit, **kwargs) + def plot_substate_thresholds_p(model, aggregate): keys = [key for key in sorted(aggregate.keys()) if aggregate[key]['isa'] == 'state' and key[0] != 'UNINITIALIZED'] data = [aggregate[key]['sub_thresholds'] for key in keys] boxplot(keys, data, 'Zustand', '% Clipping') + def plot_y(Y, **kwargs): plot_xy(np.arange(len(Y)), Y, **kwargs) -def plot_xy(X, Y, xlabel = None, ylabel = None, title = None, output = None): - fig, ax1 = plt.subplots(figsize=(10,6)) - if title != None: + +def plot_xy(X, Y, xlabel=None, ylabel=None, title=None, output=None): + fig, ax1 = plt.subplots(figsize=(10, 6)) + if title is not None: fig.canvas.set_window_title(title) - if xlabel != None: + if xlabel is not None: ax1.set_xlabel(xlabel) - if ylabel != None: + if ylabel is not None: ax1.set_ylabel(ylabel) - plt.subplots_adjust(left = 0.1, bottom = 0.1, right = 0.99, top = 0.99) + plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.99) plt.plot(X, Y, "bo", markersize=2) if output: plt.savefig(output) @@ -109,18 +122,20 @@ def plot_xy(X, Y, xlabel = None, ylabel = None, title = None, output = None): else: plt.show() + def _param_slice_eq(a, b, index): - return (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0] + return (*a[1][:index], *a[1][index + 1:]) == (*b[1][:index], *b[1][index + 1:]) and a[0] == b[0] + -def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabel = None, title = None, extra_function = None, output = None): - fig, ax1 = plt.subplots(figsize=(10,6)) - if title != None: +def plot_param(model, state_or_trans, attribute, param_idx, xlabel=None, ylabel=None, title=None, extra_function=None, output=None): + fig, ax1 = plt.subplots(figsize=(10, 6)) + if title is not None: fig.canvas.set_window_title(title) - if xlabel != None: + if xlabel is not None: ax1.set_xlabel(xlabel) - if ylabel != None: + if ylabel is not None: ax1.set_ylabel(ylabel) - plt.subplots_adjust(left = 0.1, bottom = 0.1, right = 0.99, top = 0.99) + plt.subplots_adjust(left=0.1, bottom=0.1, right=0.99, top=0.99) param_name = model.param_name(param_idx) @@ -137,8 +152,8 @@ def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabe for k, v in model.by_param.items(): if k[0] == state_or_trans: - other_param_key = (*k[1][:param_idx], *k[1][param_idx+1:]) - if not other_param_key in by_other_param: + other_param_key = (*k[1][:param_idx], *k[1][param_idx + 1:]) + if other_param_key not in by_other_param: by_other_param[other_param_key] = {'X': [], 'Y': []} by_other_param[other_param_key]['X'].extend([float(k[1][param_idx])] * len(v[attribute])) by_other_param[other_param_key]['Y'].extend(v[attribute]) @@ -153,7 +168,7 @@ def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabe YY2_legend = [] cm = plt.get_cmap('brg', len(by_other_param)) - for i, k in sorted(enumerate(by_other_param), key = lambda x: x[1]): + for i, k in sorted(enumerate(by_other_param), key=lambda x: x[1]): v = by_other_param[k] v['X'] = np.array(v['X']) v['Y'] = np.array(v['Y']) @@ -169,17 +184,17 @@ def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabe for i in range(len(v['X'])): print('{} {}'.format(v['X'][i], v['Y'][i]), file=f) - #x_range = int((v['X'].max() - v['X'].min()) * 10) - #xsp = np.linspace(v['X'].min(), v['X'].max(), x_range) + # x_range = int((v['X'].max() - v['X'].min()) * 10) + # xsp = np.linspace(v['X'].min(), v['X'].max(), x_range) if param_model: ysp = [] for x in xsp: xarg = [*k[:param_idx], x, *k[param_idx:]] - ysp.append(param_model(state_or_trans, attribute, param = xarg)) + ysp.append(param_model(state_or_trans, attribute, param=xarg)) plt.plot(xsp, ysp, "r-", color=cm(i), linewidth=0.5) YY.append(ysp) YY_legend.append(legend_sanitizer.sub('_', 'regr_{}'.format(k))) - if extra_function != None: + if extra_function is not None: ysp = [] with np.errstate(divide='ignore', invalid='ignore'): for x in xsp: @@ -202,7 +217,7 @@ def plot_param(model, state_or_trans, attribute, param_idx, xlabel = None, ylabe def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X, Y, xaxis=None, yaxis=None): - fig, ax1 = plt.subplots(figsize=(10,6)) + fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title("fit %s" % (function)) plt.subplots_adjust(left=0.14, right=0.99, top=0.99, bottom=0.14) @@ -214,16 +229,16 @@ def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X xsp = np.linspace(X[index].min(), X[index].max(), 100) x_range = 100 - if xaxis != None: + if xaxis is not None: ax1.set_xlabel(xaxis) else: ax1.set_xlabel(parameters[index]) - if yaxis != None: + if yaxis is not None: ax1.set_ylabel(yaxis) else: ax1.set_ylabel('%s %s' % (name, datatype)) - otherparams = list(set(itertools.product(*X[:index], *X[index+1:]))) + otherparams = list(set(itertools.product(*X[:index], *X[index + 1:]))) cm = plt.get_cmap('brg', len(otherparams)) for i in range(len(otherparams)): elem = otherparams[i] @@ -234,7 +249,7 @@ def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X if k < index: tt &= X[k] == elem[k] elif k > index: - tt &= X[k] == elem[k-1] + tt &= X[k] == elem[k - 1] plt.plot(X[index][tt], Y[tt], "rx", color=color) @@ -245,8 +260,8 @@ def plot_param_fit(function, name, fitfunc, funp, parameters, datatype, index, X plt.show() -def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None, output = None): - fig, ax1 = plt.subplots(figsize=(10,6)) +def boxplot(ticks, measurements, xlabel='', ylabel='', modeldata=None, output=None): + fig, ax1 = plt.subplots(figsize=(10, 6)) fig.canvas.set_window_title('DriverEval') plt.subplots_adjust(left=0.1, right=0.95, top=0.95, bottom=0.1) @@ -256,10 +271,10 @@ def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None, out plt.setp(bp['fliers'], color='red', marker='+') ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', - alpha=0.5) + alpha=0.5) ax1.set_axisbelow(True) - #ax1.set_title('DriverEval') + # ax1.set_title('DriverEval') ax1.set_xlabel(xlabel) ax1.set_ylabel(ylabel) @@ -268,7 +283,7 @@ def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None, out xtickNames = plt.setp(ax1, xticklabels=ticks) plt.setp(xtickNames, rotation=0, fontsize=10) - boxColors = ['darkkhaki', 'royalblue'] + # boxColors = ['darkkhaki', 'royalblue'] medians = list(range(numBoxes)) for i in range(numBoxes): box = bp['boxes'][i] @@ -277,11 +292,11 @@ def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None, out for j in range(5): boxX.append(box.get_xdata()[j]) boxY.append(box.get_ydata()[j]) - boxCoords = list(zip(boxX, boxY)) + # boxCoords = list(zip(boxX, boxY)) # Alternate between Dark Khaki and Royal Blue - k = i % 2 - boxPolygon = Polygon(boxCoords, facecolor=boxColors[k]) - #ax1.add_patch(boxPolygon) + # k = i % 2 + # boxPolygon = Polygon(boxCoords, facecolor=boxColors[k]) + # ax1.add_patch(boxPolygon) # Now draw the median lines back over what we just filled in med = bp['medians'][i] medianX = [] @@ -294,22 +309,22 @@ def boxplot(ticks, measurements, xlabel = '', ylabel = '', modeldata = None, out # Finally, overplot the sample averages, with horizontal alignment # in the center of each box plt.plot([np.average(med.get_xdata())], [np.average(measurements[i])], - color='w', marker='*', markeredgecolor='k') + color='w', marker='*', markeredgecolor='k') if modeldata: plt.plot([np.average(med.get_xdata())], [modeldata[i]], - color='w', marker='o', markeredgecolor='k') + color='w', marker='o', markeredgecolor='k') pos = np.arange(numBoxes) + 1 upperLabels = [str(np.round(s, 2)) for s in medians] - weights = ['bold', 'semibold'] + # weights = ['bold', 'semibold'] for tick, label in zip(range(numBoxes), ax1.get_xticklabels()): - k = tick % 2 + # k = tick % 2 y0, y1 = ax1.get_ylim() - textpos = y0 + (y1 - y0)*0.97 - ypos = ax1.get_ylim()[0] + textpos = y0 + (y1 - y0) * 0.97 + # ypos = ax1.get_ylim()[0] ax1.text(pos[tick], textpos, upperLabels[tick], - horizontalalignment='center', size='small', - color='royalblue') + horizontalalignment='center', size='small', + color='royalblue') if output: plt.savefig(output) |