summaryrefslogtreecommitdiff
path: root/lib/sly/yacc.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/sly/yacc.py')
-rw-r--r--lib/sly/yacc.py2001
1 files changed, 2001 insertions, 0 deletions
diff --git a/lib/sly/yacc.py b/lib/sly/yacc.py
new file mode 100644
index 0000000..c30f13c
--- /dev/null
+++ b/lib/sly/yacc.py
@@ -0,0 +1,2001 @@
+# -----------------------------------------------------------------------------
+# sly: yacc.py
+#
+# Copyright (C) 2016-2018
+# David M. Beazley (Dabeaz LLC)
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are
+# met:
+#
+# * Redistributions of source code must retain the above copyright notice,
+# this list of conditions and the following disclaimer.
+# * Redistributions in binary form must reproduce the above copyright notice,
+# this list of conditions and the following disclaimer in the documentation
+# and/or other materials provided with the distribution.
+# * Neither the name of the David Beazley or Dabeaz LLC may be used to
+# endorse or promote products derived from this software without
+# specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+# -----------------------------------------------------------------------------
+
+import sys
+import inspect
+from collections import OrderedDict, defaultdict
+
+__all__ = [ 'Parser' ]
+
+class YaccError(Exception):
+ '''
+ Exception raised for yacc-related build errors.
+ '''
+ pass
+
+#-----------------------------------------------------------------------------
+# === User configurable parameters ===
+#
+# Change these to modify the default behavior of yacc (if you wish).
+# Move these parameters to the Yacc class itself.
+#-----------------------------------------------------------------------------
+
+ERROR_COUNT = 3 # Number of symbols that must be shifted to leave recovery mode
+MAXINT = sys.maxsize
+
+# This object is a stand-in for a logging object created by the
+# logging module. SLY will use this by default to create things
+# such as the parser.out file. If a user wants more detailed
+# information, they can create their own logging object and pass
+# it into SLY.
+
+class SlyLogger(object):
+ def __init__(self, f):
+ self.f = f
+
+ def debug(self, msg, *args, **kwargs):
+ self.f.write((msg % args) + '\n')
+
+ info = debug
+
+ def warning(self, msg, *args, **kwargs):
+ self.f.write('WARNING: ' + (msg % args) + '\n')
+
+ def error(self, msg, *args, **kwargs):
+ self.f.write('ERROR: ' + (msg % args) + '\n')
+
+ critical = debug
+
+
+# ----------------------------------------------------------------------
+# This class is used to hold non-terminal grammar symbols during parsing.
+# It normally has the following attributes set:
+# .type = Grammar symbol type
+# .value = Symbol value
+# .lineno = Starting line number
+# .index = Starting lex position
+# ----------------------------------------------------------------------
+
+class YaccSymbol:
+ def __str__(self):
+ return self.type
+
+ def __repr__(self):
+ return str(self)
+
+# ----------------------------------------------------------------------
+# This class is a wrapper around the objects actually passed to each
+# grammar rule. Index lookup and assignment actually assign the
+# .value attribute of the underlying YaccSymbol object.
+# The lineno() method returns the line number of a given
+# item (or 0 if not defined).
+# ----------------------------------------------------------------------
+
+class YaccProduction:
+ __slots__ = ('_slice', '_namemap', '_stack')
+ def __init__(self, s, stack=None):
+ self._slice = s
+ self._namemap = { }
+ self._stack = stack
+
+ def __getitem__(self, n):
+ if n >= 0:
+ return self._slice[n].value
+ else:
+ return self._stack[n].value
+
+ def __setitem__(self, n, v):
+ if n >= 0:
+ self._slice[n].value = v
+ else:
+ self._stack[n].value = v
+
+ def __len__(self):
+ return len(self._slice)
+
+ @property
+ def lineno(self):
+ for tok in self._slice:
+ if isinstance(tok, YaccSymbol):
+ continue
+ lineno = getattr(tok, 'lineno', None)
+ if lineno:
+ return lineno
+ raise AttributeError('No line number found')
+
+ @property
+ def index(self):
+ for tok in self._slice:
+ if isinstance(tok, YaccSymbol):
+ continue
+ index = getattr(tok, 'index', None)
+ if index is not None:
+ return index
+ raise AttributeError('No index attribute found')
+
+ def __getattr__(self, name):
+ if name in self._namemap:
+ return self._slice[self._namemap[name]].value
+ else:
+ nameset = '{' + ', '.join(self._namemap) + '}'
+ raise AttributeError(f'No symbol {name}. Must be one of {nameset}.')
+
+ def __setattr__(self, name, value):
+ if name[:1] == '_':
+ super().__setattr__(name, value)
+ else:
+ raise AttributeError(f"Can't reassign the value of attribute {name!r}")
+
+# -----------------------------------------------------------------------------
+# === Grammar Representation ===
+#
+# The following functions, classes, and variables are used to represent and
+# manipulate the rules that make up a grammar.
+# -----------------------------------------------------------------------------
+
+# -----------------------------------------------------------------------------
+# class Production:
+#
+# This class stores the raw information about a single production or grammar rule.
+# A grammar rule refers to a specification such as this:
+#
+# expr : expr PLUS term
+#
+# Here are the basic attributes defined on all productions
+#
+# name - Name of the production. For example 'expr'
+# prod - A list of symbols on the right side ['expr','PLUS','term']
+# prec - Production precedence level
+# number - Production number.
+# func - Function that executes on reduce
+# file - File where production function is defined
+# lineno - Line number where production function is defined
+#
+# The following attributes are defined or optional.
+#
+# len - Length of the production (number of symbols on right hand side)
+# usyms - Set of unique symbols found in the production
+# -----------------------------------------------------------------------------
+
+class Production(object):
+ reduced = 0
+ def __init__(self, number, name, prod, precedence=('right', 0), func=None, file='', line=0):
+ self.name = name
+ self.prod = tuple(prod)
+ self.number = number
+ self.func = func
+ self.file = file
+ self.line = line
+ self.prec = precedence
+
+ # Internal settings used during table construction
+ self.len = len(self.prod) # Length of the production
+
+ # Create a list of unique production symbols used in the production
+ self.usyms = []
+ symmap = defaultdict(list)
+ for n, s in enumerate(self.prod):
+ symmap[s].append(n)
+ if s not in self.usyms:
+ self.usyms.append(s)
+
+ # Create a dict mapping symbol names to indices
+ m = {}
+ for key, indices in symmap.items():
+ if len(indices) == 1:
+ m[key] = indices[0]
+ else:
+ for n, index in enumerate(indices):
+ m[key+str(n)] = index
+
+ self.namemap = m
+
+ # List of all LR items for the production
+ self.lr_items = []
+ self.lr_next = None
+
+ def __str__(self):
+ if self.prod:
+ s = '%s -> %s' % (self.name, ' '.join(self.prod))
+ else:
+ s = f'{self.name} -> <empty>'
+
+ if self.prec[1]:
+ s += ' [precedence=%s, level=%d]' % self.prec
+
+ return s
+
+ def __repr__(self):
+ return f'Production({self})'
+
+ def __len__(self):
+ return len(self.prod)
+
+ def __nonzero__(self):
+ raise RuntimeError('Used')
+ return 1
+
+ def __getitem__(self, index):
+ return self.prod[index]
+
+ # Return the nth lr_item from the production (or None if at the end)
+ def lr_item(self, n):
+ if n > len(self.prod):
+ return None
+ p = LRItem(self, n)
+ # Precompute the list of productions immediately following.
+ try:
+ p.lr_after = Prodnames[p.prod[n+1]]
+ except (IndexError, KeyError):
+ p.lr_after = []
+ try:
+ p.lr_before = p.prod[n-1]
+ except IndexError:
+ p.lr_before = None
+ return p
+
+# -----------------------------------------------------------------------------
+# class LRItem
+#
+# This class represents a specific stage of parsing a production rule. For
+# example:
+#
+# expr : expr . PLUS term
+#
+# In the above, the "." represents the current location of the parse. Here
+# basic attributes:
+#
+# name - Name of the production. For example 'expr'
+# prod - A list of symbols on the right side ['expr','.', 'PLUS','term']
+# number - Production number.
+#
+# lr_next Next LR item. Example, if we are ' expr -> expr . PLUS term'
+# then lr_next refers to 'expr -> expr PLUS . term'
+# lr_index - LR item index (location of the ".") in the prod list.
+# lookaheads - LALR lookahead symbols for this item
+# len - Length of the production (number of symbols on right hand side)
+# lr_after - List of all productions that immediately follow
+# lr_before - Grammar symbol immediately before
+# -----------------------------------------------------------------------------
+
+class LRItem(object):
+ def __init__(self, p, n):
+ self.name = p.name
+ self.prod = list(p.prod)
+ self.number = p.number
+ self.lr_index = n
+ self.lookaheads = {}
+ self.prod.insert(n, '.')
+ self.prod = tuple(self.prod)
+ self.len = len(self.prod)
+ self.usyms = p.usyms
+
+ def __str__(self):
+ if self.prod:
+ s = '%s -> %s' % (self.name, ' '.join(self.prod))
+ else:
+ s = f'{self.name} -> <empty>'
+ return s
+
+ def __repr__(self):
+ return f'LRItem({self})'
+
+# -----------------------------------------------------------------------------
+# rightmost_terminal()
+#
+# Return the rightmost terminal from a list of symbols. Used in add_production()
+# -----------------------------------------------------------------------------
+def rightmost_terminal(symbols, terminals):
+ i = len(symbols) - 1
+ while i >= 0:
+ if symbols[i] in terminals:
+ return symbols[i]
+ i -= 1
+ return None
+
+# -----------------------------------------------------------------------------
+# === GRAMMAR CLASS ===
+#
+# The following class represents the contents of the specified grammar along
+# with various computed properties such as first sets, follow sets, LR items, etc.
+# This data is used for critical parts of the table generation process later.
+# -----------------------------------------------------------------------------
+
+class GrammarError(YaccError):
+ pass
+
+class Grammar(object):
+ def __init__(self, terminals):
+ self.Productions = [None] # A list of all of the productions. The first
+ # entry is always reserved for the purpose of
+ # building an augmented grammar
+
+ self.Prodnames = {} # A dictionary mapping the names of nonterminals to a list of all
+ # productions of that nonterminal.
+
+ self.Prodmap = {} # A dictionary that is only used to detect duplicate
+ # productions.
+
+ self.Terminals = {} # A dictionary mapping the names of terminal symbols to a
+ # list of the rules where they are used.
+
+ for term in terminals:
+ self.Terminals[term] = []
+
+ self.Terminals['error'] = []
+
+ self.Nonterminals = {} # A dictionary mapping names of nonterminals to a list
+ # of rule numbers where they are used.
+
+ self.First = {} # A dictionary of precomputed FIRST(x) symbols
+
+ self.Follow = {} # A dictionary of precomputed FOLLOW(x) symbols
+
+ self.Precedence = {} # Precedence rules for each terminal. Contains tuples of the
+ # form ('right',level) or ('nonassoc', level) or ('left',level)
+
+ self.UsedPrecedence = set() # Precedence rules that were actually used by the grammer.
+ # This is only used to provide error checking and to generate
+ # a warning about unused precedence rules.
+
+ self.Start = None # Starting symbol for the grammar
+
+
+ def __len__(self):
+ return len(self.Productions)
+
+ def __getitem__(self, index):
+ return self.Productions[index]
+
+ # -----------------------------------------------------------------------------
+ # set_precedence()
+ #
+ # Sets the precedence for a given terminal. assoc is the associativity such as
+ # 'left','right', or 'nonassoc'. level is a numeric level.
+ #
+ # -----------------------------------------------------------------------------
+
+ def set_precedence(self, term, assoc, level):
+ assert self.Productions == [None], 'Must call set_precedence() before add_production()'
+ if term in self.Precedence:
+ raise GrammarError(f'Precedence already specified for terminal {term!r}')
+ if assoc not in ['left', 'right', 'nonassoc']:
+ raise GrammarError(f"Associativity of {term!r} must be one of 'left','right', or 'nonassoc'")
+ self.Precedence[term] = (assoc, level)
+
+ # -----------------------------------------------------------------------------
+ # add_production()
+ #
+ # Given an action function, this function assembles a production rule and
+ # computes its precedence level.
+ #
+ # The production rule is supplied as a list of symbols. For example,
+ # a rule such as 'expr : expr PLUS term' has a production name of 'expr' and
+ # symbols ['expr','PLUS','term'].
+ #
+ # Precedence is determined by the precedence of the right-most non-terminal
+ # or the precedence of a terminal specified by %prec.
+ #
+ # A variety of error checks are performed to make sure production symbols
+ # are valid and that %prec is used correctly.
+ # -----------------------------------------------------------------------------
+
+ def add_production(self, prodname, syms, func=None, file='', line=0):
+
+ if prodname in self.Terminals:
+ raise GrammarError(f'{file}:{line}: Illegal rule name {prodname!r}. Already defined as a token')
+ if prodname == 'error':
+ raise GrammarError(f'{file}:{line}: Illegal rule name {prodname!r}. error is a reserved word')
+
+ # Look for literal tokens
+ for n, s in enumerate(syms):
+ if s[0] in "'\"" and s[0] == s[-1]:
+ c = s[1:-1]
+ if (len(c) != 1):
+ raise GrammarError(f'{file}:{line}: Literal token {s} in rule {prodname!r} may only be a single character')
+ if c not in self.Terminals:
+ self.Terminals[c] = []
+ syms[n] = c
+ continue
+
+ # Determine the precedence level
+ if '%prec' in syms:
+ if syms[-1] == '%prec':
+ raise GrammarError(f'{file}:{line}: Syntax error. Nothing follows %%prec')
+ if syms[-2] != '%prec':
+ raise GrammarError(f'{file}:{line}: Syntax error. %prec can only appear at the end of a grammar rule')
+ precname = syms[-1]
+ prodprec = self.Precedence.get(precname)
+ if not prodprec:
+ raise GrammarError(f'{file}:{line}: Nothing known about the precedence of {precname!r}')
+ else:
+ self.UsedPrecedence.add(precname)
+ del syms[-2:] # Drop %prec from the rule
+ else:
+ # If no %prec, precedence is determined by the rightmost terminal symbol
+ precname = rightmost_terminal(syms, self.Terminals)
+ prodprec = self.Precedence.get(precname, ('right', 0))
+
+ # See if the rule is already in the rulemap
+ map = '%s -> %s' % (prodname, syms)
+ if map in self.Prodmap:
+ m = self.Prodmap[map]
+ raise GrammarError(f'{file}:{line}: Duplicate rule {m}. ' +
+ f'Previous definition at {m.file}:{m.line}')
+
+ # From this point on, everything is valid. Create a new Production instance
+ pnumber = len(self.Productions)
+ if prodname not in self.Nonterminals:
+ self.Nonterminals[prodname] = []
+
+ # Add the production number to Terminals and Nonterminals
+ for t in syms:
+ if t in self.Terminals:
+ self.Terminals[t].append(pnumber)
+ else:
+ if t not in self.Nonterminals:
+ self.Nonterminals[t] = []
+ self.Nonterminals[t].append(pnumber)
+
+ # Create a production and add it to the list of productions
+ p = Production(pnumber, prodname, syms, prodprec, func, file, line)
+ self.Productions.append(p)
+ self.Prodmap[map] = p
+
+ # Add to the global productions list
+ try:
+ self.Prodnames[prodname].append(p)
+ except KeyError:
+ self.Prodnames[prodname] = [p]
+
+ # -----------------------------------------------------------------------------
+ # set_start()
+ #
+ # Sets the starting symbol and creates the augmented grammar. Production
+ # rule 0 is S' -> start where start is the start symbol.
+ # -----------------------------------------------------------------------------
+
+ def set_start(self, start=None):
+ if callable(start):
+ start = start.__name__
+
+ if not start:
+ start = self.Productions[1].name
+
+ if start not in self.Nonterminals:
+ raise GrammarError(f'start symbol {start} undefined')
+ self.Productions[0] = Production(0, "S'", [start])
+ self.Nonterminals[start].append(0)
+ self.Start = start
+
+ # -----------------------------------------------------------------------------
+ # find_unreachable()
+ #
+ # Find all of the nonterminal symbols that can't be reached from the starting
+ # symbol. Returns a list of nonterminals that can't be reached.
+ # -----------------------------------------------------------------------------
+
+ def find_unreachable(self):
+
+ # Mark all symbols that are reachable from a symbol s
+ def mark_reachable_from(s):
+ if s in reachable:
+ return
+ reachable.add(s)
+ for p in self.Prodnames.get(s, []):
+ for r in p.prod:
+ mark_reachable_from(r)
+
+ reachable = set()
+ mark_reachable_from(self.Productions[0].prod[0])
+ return [s for s in self.Nonterminals if s not in reachable]
+
+ # -----------------------------------------------------------------------------
+ # infinite_cycles()
+ #
+ # This function looks at the various parsing rules and tries to detect
+ # infinite recursion cycles (grammar rules where there is no possible way
+ # to derive a string of only terminals).
+ # -----------------------------------------------------------------------------
+
+ def infinite_cycles(self):
+ terminates = {}
+
+ # Terminals:
+ for t in self.Terminals:
+ terminates[t] = True
+
+ terminates['$end'] = True
+
+ # Nonterminals:
+
+ # Initialize to false:
+ for n in self.Nonterminals:
+ terminates[n] = False
+
+ # Then propagate termination until no change:
+ while True:
+ some_change = False
+ for (n, pl) in self.Prodnames.items():
+ # Nonterminal n terminates iff any of its productions terminates.
+ for p in pl:
+ # Production p terminates iff all of its rhs symbols terminate.
+ for s in p.prod:
+ if not terminates[s]:
+ # The symbol s does not terminate,
+ # so production p does not terminate.
+ p_terminates = False
+ break
+ else:
+ # didn't break from the loop,
+ # so every symbol s terminates
+ # so production p terminates.
+ p_terminates = True
+
+ if p_terminates:
+ # symbol n terminates!
+ if not terminates[n]:
+ terminates[n] = True
+ some_change = True
+ # Don't need to consider any more productions for this n.
+ break
+
+ if not some_change:
+ break
+
+ infinite = []
+ for (s, term) in terminates.items():
+ if not term:
+ if s not in self.Prodnames and s not in self.Terminals and s != 'error':
+ # s is used-but-not-defined, and we've already warned of that,
+ # so it would be overkill to say that it's also non-terminating.
+ pass
+ else:
+ infinite.append(s)
+
+ return infinite
+
+ # -----------------------------------------------------------------------------
+ # undefined_symbols()
+ #
+ # Find all symbols that were used the grammar, but not defined as tokens or
+ # grammar rules. Returns a list of tuples (sym, prod) where sym in the symbol
+ # and prod is the production where the symbol was used.
+ # -----------------------------------------------------------------------------
+ def undefined_symbols(self):
+ result = []
+ for p in self.Productions:
+ if not p:
+ continue
+
+ for s in p.prod:
+ if s not in self.Prodnames and s not in self.Terminals and s != 'error':
+ result.append((s, p))
+ return result
+
+ # -----------------------------------------------------------------------------
+ # unused_terminals()
+ #
+ # Find all terminals that were defined, but not used by the grammar. Returns
+ # a list of all symbols.
+ # -----------------------------------------------------------------------------
+ def unused_terminals(self):
+ unused_tok = []
+ for s, v in self.Terminals.items():
+ if s != 'error' and not v:
+ unused_tok.append(s)
+
+ return unused_tok
+
+ # ------------------------------------------------------------------------------
+ # unused_rules()
+ #
+ # Find all grammar rules that were defined, but not used (maybe not reachable)
+ # Returns a list of productions.
+ # ------------------------------------------------------------------------------
+
+ def unused_rules(self):
+ unused_prod = []
+ for s, v in self.Nonterminals.items():
+ if not v:
+ p = self.Prodnames[s][0]
+ unused_prod.append(p)
+ return unused_prod
+
+ # -----------------------------------------------------------------------------
+ # unused_precedence()
+ #
+ # Returns a list of tuples (term,precedence) corresponding to precedence
+ # rules that were never used by the grammar. term is the name of the terminal
+ # on which precedence was applied and precedence is a string such as 'left' or
+ # 'right' corresponding to the type of precedence.
+ # -----------------------------------------------------------------------------
+
+ def unused_precedence(self):
+ unused = []
+ for termname in self.Precedence:
+ if not (termname in self.Terminals or termname in self.UsedPrecedence):
+ unused.append((termname, self.Precedence[termname][0]))
+
+ return unused
+
+ # -------------------------------------------------------------------------
+ # _first()
+ #
+ # Compute the value of FIRST1(beta) where beta is a tuple of symbols.
+ #
+ # During execution of compute_first1, the result may be incomplete.
+ # Afterward (e.g., when called from compute_follow()), it will be complete.
+ # -------------------------------------------------------------------------
+ def _first(self, beta):
+
+ # We are computing First(x1,x2,x3,...,xn)
+ result = []
+ for x in beta:
+ x_produces_empty = False
+
+ # Add all the non-<empty> symbols of First[x] to the result.
+ for f in self.First[x]:
+ if f == '<empty>':
+ x_produces_empty = True
+ else:
+ if f not in result:
+ result.append(f)
+
+ if x_produces_empty:
+ # We have to consider the next x in beta,
+ # i.e. stay in the loop.
+ pass
+ else:
+ # We don't have to consider any further symbols in beta.
+ break
+ else:
+ # There was no 'break' from the loop,
+ # so x_produces_empty was true for all x in beta,
+ # so beta produces empty as well.
+ result.append('<empty>')
+
+ return result
+
+ # -------------------------------------------------------------------------
+ # compute_first()
+ #
+ # Compute the value of FIRST1(X) for all symbols
+ # -------------------------------------------------------------------------
+ def compute_first(self):
+ if self.First:
+ return self.First
+
+ # Terminals:
+ for t in self.Terminals:
+ self.First[t] = [t]
+
+ self.First['$end'] = ['$end']
+
+ # Nonterminals:
+
+ # Initialize to the empty set:
+ for n in self.Nonterminals:
+ self.First[n] = []
+
+ # Then propagate symbols until no change:
+ while True:
+ some_change = False
+ for n in self.Nonterminals:
+ for p in self.Prodnames[n]:
+ for f in self._first(p.prod):
+ if f not in self.First[n]:
+ self.First[n].append(f)
+ some_change = True
+ if not some_change:
+ break
+
+ return self.First
+
+ # ---------------------------------------------------------------------
+ # compute_follow()
+ #
+ # Computes all of the follow sets for every non-terminal symbol. The
+ # follow set is the set of all symbols that might follow a given
+ # non-terminal. See the Dragon book, 2nd Ed. p. 189.
+ # ---------------------------------------------------------------------
+ def compute_follow(self, start=None):
+ # If already computed, return the result
+ if self.Follow:
+ return self.Follow
+
+ # If first sets not computed yet, do that first.
+ if not self.First:
+ self.compute_first()
+
+ # Add '$end' to the follow list of the start symbol
+ for k in self.Nonterminals:
+ self.Follow[k] = []
+
+ if not start:
+ start = self.Productions[1].name
+
+ self.Follow[start] = ['$end']
+
+ while True:
+ didadd = False
+ for p in self.Productions[1:]:
+ # Here is the production set
+ for i, B in enumerate(p.prod):
+ if B in self.Nonterminals:
+ # Okay. We got a non-terminal in a production
+ fst = self._first(p.prod[i+1:])
+ hasempty = False
+ for f in fst:
+ if f != '<empty>' and f not in self.Follow[B]:
+ self.Follow[B].append(f)
+ didadd = True
+ if f == '<empty>':
+ hasempty = True
+ if hasempty or i == (len(p.prod)-1):
+ # Add elements of follow(a) to follow(b)
+ for f in self.Follow[p.name]:
+ if f not in self.Follow[B]:
+ self.Follow[B].append(f)
+ didadd = True
+ if not didadd:
+ break
+ return self.Follow
+
+
+ # -----------------------------------------------------------------------------
+ # build_lritems()
+ #
+ # This function walks the list of productions and builds a complete set of the
+ # LR items. The LR items are stored in two ways: First, they are uniquely
+ # numbered and placed in the list _lritems. Second, a linked list of LR items
+ # is built for each production. For example:
+ #
+ # E -> E PLUS E
+ #
+ # Creates the list
+ #
+ # [E -> . E PLUS E, E -> E . PLUS E, E -> E PLUS . E, E -> E PLUS E . ]
+ # -----------------------------------------------------------------------------
+
+ def build_lritems(self):
+ for p in self.Productions:
+ lastlri = p
+ i = 0
+ lr_items = []
+ while True:
+ if i > len(p):
+ lri = None
+ else:
+ lri = LRItem(p, i)
+ # Precompute the list of productions immediately following
+ try:
+ lri.lr_after = self.Prodnames[lri.prod[i+1]]
+ except (IndexError, KeyError):
+ lri.lr_after = []
+ try:
+ lri.lr_before = lri.prod[i-1]
+ except IndexError:
+ lri.lr_before = None
+
+ lastlri.lr_next = lri
+ if not lri:
+ break
+ lr_items.append(lri)
+ lastlri = lri
+ i += 1
+ p.lr_items = lr_items
+
+
+ # ----------------------------------------------------------------------
+ # Debugging output. Printing the grammar will produce a detailed
+ # description along with some diagnostics.
+ # ----------------------------------------------------------------------
+ def __str__(self):
+ out = []
+ out.append('Grammar:\n')
+ for n, p in enumerate(self.Productions):
+ out.append(f'Rule {n:<5d} {p}')
+
+ unused_terminals = self.unused_terminals()
+ if unused_terminals:
+ out.append('\nUnused terminals:\n')
+ for term in unused_terminals:
+ out.append(f' {term}')
+
+ out.append('\nTerminals, with rules where they appear:\n')
+ for term in sorted(self.Terminals):
+ out.append('%-20s : %s' % (term, ' '.join(str(s) for s in self.Terminals[term])))
+
+ out.append('\nNonterminals, with rules where they appear:\n')
+ for nonterm in sorted(self.Nonterminals):
+ out.append('%-20s : %s' % (nonterm, ' '.join(str(s) for s in self.Nonterminals[nonterm])))
+
+ out.append('')
+ return '\n'.join(out)
+
+# -----------------------------------------------------------------------------
+# === LR Generator ===
+#
+# The following classes and functions are used to generate LR parsing tables on
+# a grammar.
+# -----------------------------------------------------------------------------
+
+# -----------------------------------------------------------------------------
+# digraph()
+# traverse()
+#
+# The following two functions are used to compute set valued functions
+# of the form:
+#
+# F(x) = F'(x) U U{F(y) | x R y}
+#
+# This is used to compute the values of Read() sets as well as FOLLOW sets
+# in LALR(1) generation.
+#
+# Inputs: X - An input set
+# R - A relation
+# FP - Set-valued function
+# ------------------------------------------------------------------------------
+
+def digraph(X, R, FP):
+ N = {}
+ for x in X:
+ N[x] = 0
+ stack = []
+ F = {}
+ for x in X:
+ if N[x] == 0:
+ traverse(x, N, stack, F, X, R, FP)
+ return F
+
+def traverse(x, N, stack, F, X, R, FP):
+ stack.append(x)
+ d = len(stack)
+ N[x] = d
+ F[x] = FP(x) # F(X) <- F'(x)
+
+ rel = R(x) # Get y's related to x
+ for y in rel:
+ if N[y] == 0:
+ traverse(y, N, stack, F, X, R, FP)
+ N[x] = min(N[x], N[y])
+ for a in F.get(y, []):
+ if a not in F[x]:
+ F[x].append(a)
+ if N[x] == d:
+ N[stack[-1]] = MAXINT
+ F[stack[-1]] = F[x]
+ element = stack.pop()
+ while element != x:
+ N[stack[-1]] = MAXINT
+ F[stack[-1]] = F[x]
+ element = stack.pop()
+
+class LALRError(YaccError):
+ pass
+
+# -----------------------------------------------------------------------------
+# == LRGeneratedTable ==
+#
+# This class implements the LR table generation algorithm. There are no
+# public methods except for write()
+# -----------------------------------------------------------------------------
+
+class LRTable(object):
+ def __init__(self, grammar):
+ self.grammar = grammar
+
+ # Internal attributes
+ self.lr_action = {} # Action table
+ self.lr_goto = {} # Goto table
+ self.lr_productions = grammar.Productions # Copy of grammar Production array
+ self.lr_goto_cache = {} # Cache of computed gotos
+ self.lr0_cidhash = {} # Cache of closures
+ self._add_count = 0 # Internal counter used to detect cycles
+
+ # Diagonistic information filled in by the table generator
+ self.state_descriptions = OrderedDict()
+ self.sr_conflict = 0
+ self.rr_conflict = 0
+ self.conflicts = [] # List of conflicts
+
+ self.sr_conflicts = []
+ self.rr_conflicts = []
+
+ # Build the tables
+ self.grammar.build_lritems()
+ self.grammar.compute_first()
+ self.grammar.compute_follow()
+ self.lr_parse_table()
+
+ # Build default states
+ # This identifies parser states where there is only one possible reduction action.
+ # For such states, the parser can make a choose to make a rule reduction without consuming
+ # the next look-ahead token. This delayed invocation of the tokenizer can be useful in
+ # certain kinds of advanced parsing situations where the lexer and parser interact with
+ # each other or change states (i.e., manipulation of scope, lexer states, etc.).
+ #
+ # See: http://www.gnu.org/software/bison/manual/html_node/Default-Reductions.html#Default-Reductions
+ self.defaulted_states = {}
+ for state, actions in self.lr_action.items():
+ rules = list(actions.values())
+ if len(rules) == 1 and rules[0] < 0:
+ self.defaulted_states[state] = rules[0]
+
+ # Compute the LR(0) closure operation on I, where I is a set of LR(0) items.
+ def lr0_closure(self, I):
+ self._add_count += 1
+
+ # Add everything in I to J
+ J = I[:]
+ didadd = True
+ while didadd:
+ didadd = False
+ for j in J:
+ for x in j.lr_after:
+ if getattr(x, 'lr0_added', 0) == self._add_count:
+ continue
+ # Add B --> .G to J
+ J.append(x.lr_next)
+ x.lr0_added = self._add_count
+ didadd = True
+
+ return J
+
+ # Compute the LR(0) goto function goto(I,X) where I is a set
+ # of LR(0) items and X is a grammar symbol. This function is written
+ # in a way that guarantees uniqueness of the generated goto sets
+ # (i.e. the same goto set will never be returned as two different Python
+ # objects). With uniqueness, we can later do fast set comparisons using
+ # id(obj) instead of element-wise comparison.
+
+ def lr0_goto(self, I, x):
+ # First we look for a previously cached entry
+ g = self.lr_goto_cache.get((id(I), x))
+ if g:
+ return g
+
+ # Now we generate the goto set in a way that guarantees uniqueness
+ # of the result
+
+ s = self.lr_goto_cache.get(x)
+ if not s:
+ s = {}
+ self.lr_goto_cache[x] = s
+
+ gs = []
+ for p in I:
+ n = p.lr_next
+ if n and n.lr_before == x:
+ s1 = s.get(id(n))
+ if not s1:
+ s1 = {}
+ s[id(n)] = s1
+ gs.append(n)
+ s = s1
+ g = s.get('$end')
+ if not g:
+ if gs:
+ g = self.lr0_closure(gs)
+ s['$end'] = g
+ else:
+ s['$end'] = gs
+ self.lr_goto_cache[(id(I), x)] = g
+ return g
+
+ # Compute the LR(0) sets of item function
+ def lr0_items(self):
+ C = [self.lr0_closure([self.grammar.Productions[0].lr_next])]
+ i = 0
+ for I in C:
+ self.lr0_cidhash[id(I)] = i
+ i += 1
+
+ # Loop over the items in C and each grammar symbols
+ i = 0
+ while i < len(C):
+ I = C[i]
+ i += 1
+
+ # Collect all of the symbols that could possibly be in the goto(I,X) sets
+ asyms = {}
+ for ii in I:
+ for s in ii.usyms:
+ asyms[s] = None
+
+ for x in asyms:
+ g = self.lr0_goto(I, x)
+ if not g or id(g) in self.lr0_cidhash:
+ continue
+ self.lr0_cidhash[id(g)] = len(C)
+ C.append(g)
+
+ return C
+
+ # -----------------------------------------------------------------------------
+ # ==== LALR(1) Parsing ====
+ #
+ # LALR(1) parsing is almost exactly the same as SLR except that instead of
+ # relying upon Follow() sets when performing reductions, a more selective
+ # lookahead set that incorporates the state of the LR(0) machine is utilized.
+ # Thus, we mainly just have to focus on calculating the lookahead sets.
+ #
+ # The method used here is due to DeRemer and Pennelo (1982).
+ #
+ # DeRemer, F. L., and T. J. Pennelo: "Efficient Computation of LALR(1)
+ # Lookahead Sets", ACM Transactions on Programming Languages and Systems,
+ # Vol. 4, No. 4, Oct. 1982, pp. 615-649
+ #
+ # Further details can also be found in:
+ #
+ # J. Tremblay and P. Sorenson, "The Theory and Practice of Compiler Writing",
+ # McGraw-Hill Book Company, (1985).
+ #
+ # -----------------------------------------------------------------------------
+
+ # -----------------------------------------------------------------------------
+ # compute_nullable_nonterminals()
+ #
+ # Creates a dictionary containing all of the non-terminals that might produce
+ # an empty production.
+ # -----------------------------------------------------------------------------
+
+ def compute_nullable_nonterminals(self):
+ nullable = set()
+ num_nullable = 0
+ while True:
+ for p in self.grammar.Productions[1:]:
+ if p.len == 0:
+ nullable.add(p.name)
+ continue
+ for t in p.prod:
+ if t not in nullable:
+ break
+ else:
+ nullable.add(p.name)
+ if len(nullable) == num_nullable:
+ break
+ num_nullable = len(nullable)
+ return nullable
+
+ # -----------------------------------------------------------------------------
+ # find_nonterminal_trans(C)
+ #
+ # Given a set of LR(0) items, this functions finds all of the non-terminal
+ # transitions. These are transitions in which a dot appears immediately before
+ # a non-terminal. Returns a list of tuples of the form (state,N) where state
+ # is the state number and N is the nonterminal symbol.
+ #
+ # The input C is the set of LR(0) items.
+ # -----------------------------------------------------------------------------
+
+ def find_nonterminal_transitions(self, C):
+ trans = []
+ for stateno, state in enumerate(C):
+ for p in state:
+ if p.lr_index < p.len - 1:
+ t = (stateno, p.prod[p.lr_index+1])
+ if t[1] in self.grammar.Nonterminals:
+ if t not in trans:
+ trans.append(t)
+ return trans
+
+ # -----------------------------------------------------------------------------
+ # dr_relation()
+ #
+ # Computes the DR(p,A) relationships for non-terminal transitions. The input
+ # is a tuple (state,N) where state is a number and N is a nonterminal symbol.
+ #
+ # Returns a list of terminals.
+ # -----------------------------------------------------------------------------
+
+ def dr_relation(self, C, trans, nullable):
+ dr_set = {}
+ state, N = trans
+ terms = []
+
+ g = self.lr0_goto(C[state], N)
+ for p in g:
+ if p.lr_index < p.len - 1:
+ a = p.prod[p.lr_index+1]
+ if a in self.grammar.Terminals:
+ if a not in terms:
+ terms.append(a)
+
+ # This extra bit is to handle the start state
+ if state == 0 and N == self.grammar.Productions[0].prod[0]:
+ terms.append('$end')
+
+ return terms
+
+ # -----------------------------------------------------------------------------
+ # reads_relation()
+ #
+ # Computes the READS() relation (p,A) READS (t,C).
+ # -----------------------------------------------------------------------------
+
+ def reads_relation(self, C, trans, empty):
+ # Look for empty transitions
+ rel = []
+ state, N = trans
+
+ g = self.lr0_goto(C[state], N)
+ j = self.lr0_cidhash.get(id(g), -1)
+ for p in g:
+ if p.lr_index < p.len - 1:
+ a = p.prod[p.lr_index + 1]
+ if a in empty:
+ rel.append((j, a))
+
+ return rel
+
+ # -----------------------------------------------------------------------------
+ # compute_lookback_includes()
+ #
+ # Determines the lookback and includes relations
+ #
+ # LOOKBACK:
+ #
+ # This relation is determined by running the LR(0) state machine forward.
+ # For example, starting with a production "N : . A B C", we run it forward
+ # to obtain "N : A B C ." We then build a relationship between this final
+ # state and the starting state. These relationships are stored in a dictionary
+ # lookdict.
+ #
+ # INCLUDES:
+ #
+ # Computes the INCLUDE() relation (p,A) INCLUDES (p',B).
+ #
+ # This relation is used to determine non-terminal transitions that occur
+ # inside of other non-terminal transition states. (p,A) INCLUDES (p', B)
+ # if the following holds:
+ #
+ # B -> LAT, where T -> epsilon and p' -L-> p
+ #
+ # L is essentially a prefix (which may be empty), T is a suffix that must be
+ # able to derive an empty string. State p' must lead to state p with the string L.
+ #
+ # -----------------------------------------------------------------------------
+
+ def compute_lookback_includes(self, C, trans, nullable):
+ lookdict = {} # Dictionary of lookback relations
+ includedict = {} # Dictionary of include relations
+
+ # Make a dictionary of non-terminal transitions
+ dtrans = {}
+ for t in trans:
+ dtrans[t] = 1
+
+ # Loop over all transitions and compute lookbacks and includes
+ for state, N in trans:
+ lookb = []
+ includes = []
+ for p in C[state]:
+ if p.name != N:
+ continue
+
+ # Okay, we have a name match. We now follow the production all the way
+ # through the state machine until we get the . on the right hand side
+
+ lr_index = p.lr_index
+ j = state
+ while lr_index < p.len - 1:
+ lr_index = lr_index + 1
+ t = p.prod[lr_index]
+
+ # Check to see if this symbol and state are a non-terminal transition
+ if (j, t) in dtrans:
+ # Yes. Okay, there is some chance that this is an includes relation
+ # the only way to know for certain is whether the rest of the
+ # production derives empty
+
+ li = lr_index + 1
+ while li < p.len:
+ if p.prod[li] in self.grammar.Terminals:
+ break # No forget it
+ if p.prod[li] not in nullable:
+ break
+ li = li + 1
+ else:
+ # Appears to be a relation between (j,t) and (state,N)
+ includes.append((j, t))
+
+ g = self.lr0_goto(C[j], t) # Go to next set
+ j = self.lr0_cidhash.get(id(g), -1) # Go to next state
+
+ # When we get here, j is the final state, now we have to locate the production
+ for r in C[j]:
+ if r.name != p.name:
+ continue
+ if r.len != p.len:
+ continue
+ i = 0
+ # This look is comparing a production ". A B C" with "A B C ."
+ while i < r.lr_index:
+ if r.prod[i] != p.prod[i+1]:
+ break
+ i = i + 1
+ else:
+ lookb.append((j, r))
+ for i in includes:
+ if i not in includedict:
+ includedict[i] = []
+ includedict[i].append((state, N))
+ lookdict[(state, N)] = lookb
+
+ return lookdict, includedict
+
+ # -----------------------------------------------------------------------------
+ # compute_read_sets()
+ #
+ # Given a set of LR(0) items, this function computes the read sets.
+ #
+ # Inputs: C = Set of LR(0) items
+ # ntrans = Set of nonterminal transitions
+ # nullable = Set of empty transitions
+ #
+ # Returns a set containing the read sets
+ # -----------------------------------------------------------------------------
+
+ def compute_read_sets(self, C, ntrans, nullable):
+ FP = lambda x: self.dr_relation(C, x, nullable)
+ R = lambda x: self.reads_relation(C, x, nullable)
+ F = digraph(ntrans, R, FP)
+ return F
+
+ # -----------------------------------------------------------------------------
+ # compute_follow_sets()
+ #
+ # Given a set of LR(0) items, a set of non-terminal transitions, a readset,
+ # and an include set, this function computes the follow sets
+ #
+ # Follow(p,A) = Read(p,A) U U {Follow(p',B) | (p,A) INCLUDES (p',B)}
+ #
+ # Inputs:
+ # ntrans = Set of nonterminal transitions
+ # readsets = Readset (previously computed)
+ # inclsets = Include sets (previously computed)
+ #
+ # Returns a set containing the follow sets
+ # -----------------------------------------------------------------------------
+
+ def compute_follow_sets(self, ntrans, readsets, inclsets):
+ FP = lambda x: readsets[x]
+ R = lambda x: inclsets.get(x, [])
+ F = digraph(ntrans, R, FP)
+ return F
+
+ # -----------------------------------------------------------------------------
+ # add_lookaheads()
+ #
+ # Attaches the lookahead symbols to grammar rules.
+ #
+ # Inputs: lookbacks - Set of lookback relations
+ # followset - Computed follow set
+ #
+ # This function directly attaches the lookaheads to productions contained
+ # in the lookbacks set
+ # -----------------------------------------------------------------------------
+
+ def add_lookaheads(self, lookbacks, followset):
+ for trans, lb in lookbacks.items():
+ # Loop over productions in lookback
+ for state, p in lb:
+ if state not in p.lookaheads:
+ p.lookaheads[state] = []
+ f = followset.get(trans, [])
+ for a in f:
+ if a not in p.lookaheads[state]:
+ p.lookaheads[state].append(a)
+
+ # -----------------------------------------------------------------------------
+ # add_lalr_lookaheads()
+ #
+ # This function does all of the work of adding lookahead information for use
+ # with LALR parsing
+ # -----------------------------------------------------------------------------
+
+ def add_lalr_lookaheads(self, C):
+ # Determine all of the nullable nonterminals
+ nullable = self.compute_nullable_nonterminals()
+
+ # Find all non-terminal transitions
+ trans = self.find_nonterminal_transitions(C)
+
+ # Compute read sets
+ readsets = self.compute_read_sets(C, trans, nullable)
+
+ # Compute lookback/includes relations
+ lookd, included = self.compute_lookback_includes(C, trans, nullable)
+
+ # Compute LALR FOLLOW sets
+ followsets = self.compute_follow_sets(trans, readsets, included)
+
+ # Add all of the lookaheads
+ self.add_lookaheads(lookd, followsets)
+
+ # -----------------------------------------------------------------------------
+ # lr_parse_table()
+ #
+ # This function constructs the final LALR parse table. Touch this code and die.
+ # -----------------------------------------------------------------------------
+ def lr_parse_table(self):
+ Productions = self.grammar.Productions
+ Precedence = self.grammar.Precedence
+ goto = self.lr_goto # Goto array
+ action = self.lr_action # Action array
+
+ actionp = {} # Action production array (temporary)
+
+ # Step 1: Construct C = { I0, I1, ... IN}, collection of LR(0) items
+ # This determines the number of states
+
+ C = self.lr0_items()
+ self.add_lalr_lookaheads(C)
+
+ # Build the parser table, state by state
+ for st, I in enumerate(C):
+ descrip = []
+ # Loop over each production in I
+ actlist = [] # List of actions
+ st_action = {}
+ st_actionp = {}
+ st_goto = {}
+
+ descrip.append(f'\nstate {st}\n')
+ for p in I:
+ descrip.append(f' ({p.number}) {p}')
+
+ for p in I:
+ if p.len == p.lr_index + 1:
+ if p.name == "S'":
+ # Start symbol. Accept!
+ st_action['$end'] = 0
+ st_actionp['$end'] = p
+ else:
+ # We are at the end of a production. Reduce!
+ laheads = p.lookaheads[st]
+ for a in laheads:
+ actlist.append((a, p, f'reduce using rule {p.number} ({p})'))
+ r = st_action.get(a)
+ if r is not None:
+ # Have a shift/reduce or reduce/reduce conflict
+ if r > 0:
+ # Need to decide on shift or reduce here
+ # By default we favor shifting. Need to add
+ # some precedence rules here.
+
+ # Shift precedence comes from the token
+ sprec, slevel = Precedence.get(a, ('right', 0))
+
+ # Reduce precedence comes from rule being reduced (p)
+ rprec, rlevel = Productions[p.number].prec
+
+ if (slevel < rlevel) or ((slevel == rlevel) and (rprec == 'left')):
+ # We really need to reduce here.
+ st_action[a] = -p.number
+ st_actionp[a] = p
+ if not slevel and not rlevel:
+ descrip.append(f' ! shift/reduce conflict for {a} resolved as reduce')
+ self.sr_conflicts.append((st, a, 'reduce'))
+ Productions[p.number].reduced += 1
+ elif (slevel == rlevel) and (rprec == 'nonassoc'):
+ st_action[a] = None
+ else:
+ # Hmmm. Guess we'll keep the shift
+ if not rlevel:
+ descrip.append(f' ! shift/reduce conflict for {a} resolved as shift')
+ self.sr_conflicts.append((st, a, 'shift'))
+ elif r <= 0:
+ # Reduce/reduce conflict. In this case, we favor the rule
+ # that was defined first in the grammar file
+ oldp = Productions[-r]
+ pp = Productions[p.number]
+ if oldp.line > pp.line:
+ st_action[a] = -p.number
+ st_actionp[a] = p
+ chosenp, rejectp = pp, oldp
+ Productions[p.number].reduced += 1
+ Productions[oldp.number].reduced -= 1
+ else:
+ chosenp, rejectp = oldp, pp
+ self.rr_conflicts.append((st, chosenp, rejectp))
+ descrip.append(' ! reduce/reduce conflict for %s resolved using rule %d (%s)' %
+ (a, st_actionp[a].number, st_actionp[a]))
+ else:
+ raise LALRError(f'Unknown conflict in state {st}')
+ else:
+ st_action[a] = -p.number
+ st_actionp[a] = p
+ Productions[p.number].reduced += 1
+ else:
+ i = p.lr_index
+ a = p.prod[i+1] # Get symbol right after the "."
+ if a in self.grammar.Terminals:
+ g = self.lr0_goto(I, a)
+ j = self.lr0_cidhash.get(id(g), -1)
+ if j >= 0:
+ # We are in a shift state
+ actlist.append((a, p, f'shift and go to state {j}'))
+ r = st_action.get(a)
+ if r is not None:
+ # Whoa have a shift/reduce or shift/shift conflict
+ if r > 0:
+ if r != j:
+ raise LALRError(f'Shift/shift conflict in state {st}')
+ elif r <= 0:
+ # Do a precedence check.
+ # - if precedence of reduce rule is higher, we reduce.
+ # - if precedence of reduce is same and left assoc, we reduce.
+ # - otherwise we shift
+ rprec, rlevel = Productions[st_actionp[a].number].prec
+ sprec, slevel = Precedence.get(a, ('right', 0))
+ if (slevel > rlevel) or ((slevel == rlevel) and (rprec == 'right')):
+ # We decide to shift here... highest precedence to shift
+ Productions[st_actionp[a].number].reduced -= 1
+ st_action[a] = j
+ st_actionp[a] = p
+ if not rlevel:
+ descrip.append(f' ! shift/reduce conflict for {a} resolved as shift')
+ self.sr_conflicts.append((st, a, 'shift'))
+ elif (slevel == rlevel) and (rprec == 'nonassoc'):
+ st_action[a] = None
+ else:
+ # Hmmm. Guess we'll keep the reduce
+ if not slevel and not rlevel:
+ descrip.append(f' ! shift/reduce conflict for {a} resolved as reduce')
+ self.sr_conflicts.append((st, a, 'reduce'))
+
+ else:
+ raise LALRError(f'Unknown conflict in state {st}')
+ else:
+ st_action[a] = j
+ st_actionp[a] = p
+
+ # Print the actions associated with each terminal
+ _actprint = {}
+ for a, p, m in actlist:
+ if a in st_action:
+ if p is st_actionp[a]:
+ descrip.append(f' {a:<15s} {m}')
+ _actprint[(a, m)] = 1
+ descrip.append('')
+
+ # Construct the goto table for this state
+ nkeys = {}
+ for ii in I:
+ for s in ii.usyms:
+ if s in self.grammar.Nonterminals:
+ nkeys[s] = None
+ for n in nkeys:
+ g = self.lr0_goto(I, n)
+ j = self.lr0_cidhash.get(id(g), -1)
+ if j >= 0:
+ st_goto[n] = j
+ descrip.append(f' {n:<30s} shift and go to state {j}')
+
+ action[st] = st_action
+ actionp[st] = st_actionp
+ goto[st] = st_goto
+ self.state_descriptions[st] = '\n'.join(descrip)
+
+ # ----------------------------------------------------------------------
+ # Debugging output. Printing the LRTable object will produce a listing
+ # of all of the states, conflicts, and other details.
+ # ----------------------------------------------------------------------
+ def __str__(self):
+ out = []
+ for descrip in self.state_descriptions.values():
+ out.append(descrip)
+
+ if self.sr_conflicts or self.rr_conflicts:
+ out.append('\nConflicts:\n')
+
+ for state, tok, resolution in self.sr_conflicts:
+ out.append(f'shift/reduce conflict for {tok} in state {state} resolved as {resolution}')
+
+ already_reported = set()
+ for state, rule, rejected in self.rr_conflicts:
+ if (state, id(rule), id(rejected)) in already_reported:
+ continue
+ out.append(f'reduce/reduce conflict in state {state} resolved using rule {rule}')
+ out.append(f'rejected rule ({rejected}) in state {state}')
+ already_reported.add((state, id(rule), id(rejected)))
+
+ warned_never = set()
+ for state, rule, rejected in self.rr_conflicts:
+ if not rejected.reduced and (rejected not in warned_never):
+ out.append(f'Rule ({rejected}) is never reduced')
+ warned_never.add(rejected)
+
+ return '\n'.join(out)
+
+# Collect grammar rules from a function
+def _collect_grammar_rules(func):
+ grammar = []
+ while func:
+ prodname = func.__name__
+ unwrapped = inspect.unwrap(func)
+ filename = unwrapped.__code__.co_filename
+ lineno = unwrapped.__code__.co_firstlineno
+ for rule, lineno in zip(func.rules, range(lineno+len(func.rules)-1, 0, -1)):
+ syms = rule.split()
+ if syms[1:2] == [':'] or syms[1:2] == ['::=']:
+ grammar.append((func, filename, lineno, syms[0], syms[2:]))
+ else:
+ grammar.append((func, filename, lineno, prodname, syms))
+ func = getattr(func, 'next_func', None)
+
+ return grammar
+
+class ParserMetaDict(dict):
+ '''
+ Dictionary that allows decorated grammar rule functions to be overloaded
+ '''
+ def __setitem__(self, key, value):
+ if key in self and callable(value) and hasattr(value, 'rules'):
+ value.next_func = self[key]
+ if not hasattr(value.next_func, 'rules'):
+ raise GrammarError(f'Redefinition of {key}. Perhaps an earlier {key} is missing @_')
+ super().__setitem__(key, value)
+
+ def __getitem__(self, key):
+ if key not in self and key.isupper() and key[:1] != '_':
+ return key.upper()
+ else:
+ return super().__getitem__(key)
+
+class ParserMeta(type):
+ @classmethod
+ def __prepare__(meta, *args, **kwargs):
+ d = ParserMetaDict()
+ def _(rule, *extra):
+ rules = [rule, *extra]
+ def decorate(func):
+ func.rules = [ *getattr(func, 'rules', []), *rules[::-1] ]
+ return func
+ return decorate
+ d['_'] = _
+ return d
+
+ def __new__(meta, clsname, bases, attributes):
+ del attributes['_']
+ cls = super().__new__(meta, clsname, bases, attributes)
+ cls._build(list(attributes.items()))
+ return cls
+
+class Parser(metaclass=ParserMeta):
+ # Logging object where debugging/diagnostic messages are sent
+ log = SlyLogger(sys.stderr)
+
+ # Debugging filename where parsetab.out data can be written
+ debugfile = None
+
+ @classmethod
+ def __validate_tokens(cls):
+ if not hasattr(cls, 'tokens'):
+ cls.log.error('No token list is defined')
+ return False
+
+ if not cls.tokens:
+ cls.log.error('tokens is empty')
+ return False
+
+ if 'error' in cls.tokens:
+ cls.log.error("Illegal token name 'error'. Is a reserved word")
+ return False
+
+ return True
+
+ @classmethod
+ def __validate_precedence(cls):
+ if not hasattr(cls, 'precedence'):
+ cls.__preclist = []
+ return True
+
+ preclist = []
+ if not isinstance(cls.precedence, (list, tuple)):
+ cls.log.error('precedence must be a list or tuple')
+ return False
+
+ for level, p in enumerate(cls.precedence, start=1):
+ if not isinstance(p, (list, tuple)):
+ cls.log.error(f'Bad precedence table entry {p!r}. Must be a list or tuple')
+ return False
+
+ if len(p) < 2:
+ cls.log.error(f'Malformed precedence entry {p!r}. Must be (assoc, term, ..., term)')
+ return False
+
+ if not all(isinstance(term, str) for term in p):
+ cls.log.error('precedence items must be strings')
+ return False
+
+ assoc = p[0]
+ preclist.extend((term, assoc, level) for term in p[1:])
+
+ cls.__preclist = preclist
+ return True
+
+ @classmethod
+ def __validate_specification(cls):
+ '''
+ Validate various parts of the grammar specification
+ '''
+ if not cls.__validate_tokens():
+ return False
+ if not cls.__validate_precedence():
+ return False
+ return True
+
+ @classmethod
+ def __build_grammar(cls, rules):
+ '''
+ Build the grammar from the grammar rules
+ '''
+ grammar_rules = []
+ errors = ''
+ # Check for non-empty symbols
+ if not rules:
+ raise YaccError('No grammar rules are defined')
+
+ grammar = Grammar(cls.tokens)
+
+ # Set the precedence level for terminals
+ for term, assoc, level in cls.__preclist:
+ try:
+ grammar.set_precedence(term, assoc, level)
+ except GrammarError as e:
+ errors += f'{e}\n'
+
+ for name, func in rules:
+ try:
+ parsed_rule = _collect_grammar_rules(func)
+ for pfunc, rulefile, ruleline, prodname, syms in parsed_rule:
+ try:
+ grammar.add_production(prodname, syms, pfunc, rulefile, ruleline)
+ except GrammarError as e:
+ errors += f'{e}\n'
+ except SyntaxError as e:
+ errors += f'{e}\n'
+ try:
+ grammar.set_start(getattr(cls, 'start', None))
+ except GrammarError as e:
+ errors += f'{e}\n'
+
+ undefined_symbols = grammar.undefined_symbols()
+ for sym, prod in undefined_symbols:
+ errors += '%s:%d: Symbol %r used, but not defined as a token or a rule\n' % (prod.file, prod.line, sym)
+
+ unused_terminals = grammar.unused_terminals()
+ if unused_terminals:
+ unused_str = '{' + ','.join(unused_terminals) + '}'
+ cls.log.warning(f'Token{"(s)" if len(unused_terminals) >1 else ""} {unused_str} defined, but not used')
+
+ unused_rules = grammar.unused_rules()
+ for prod in unused_rules:
+ cls.log.warning('%s:%d: Rule %r defined, but not used', prod.file, prod.line, prod.name)
+
+ if len(unused_terminals) == 1:
+ cls.log.warning('There is 1 unused token')
+ if len(unused_terminals) > 1:
+ cls.log.warning('There are %d unused tokens', len(unused_terminals))
+
+ if len(unused_rules) == 1:
+ cls.log.warning('There is 1 unused rule')
+ if len(unused_rules) > 1:
+ cls.log.warning('There are %d unused rules', len(unused_rules))
+
+ unreachable = grammar.find_unreachable()
+ for u in unreachable:
+ cls.log.warning('Symbol %r is unreachable', u)
+
+ if len(undefined_symbols) == 0:
+ infinite = grammar.infinite_cycles()
+ for inf in infinite:
+ errors += 'Infinite recursion detected for symbol %r\n' % inf
+
+ unused_prec = grammar.unused_precedence()
+ for term, assoc in unused_prec:
+ errors += 'Precedence rule %r defined for unknown symbol %r\n' % (assoc, term)
+
+ cls._grammar = grammar
+ if errors:
+ raise YaccError('Unable to build grammar.\n'+errors)
+
+ @classmethod
+ def __build_lrtables(cls):
+ '''
+ Build the LR Parsing tables from the grammar
+ '''
+ lrtable = LRTable(cls._grammar)
+ num_sr = len(lrtable.sr_conflicts)
+
+ # Report shift/reduce and reduce/reduce conflicts
+ if num_sr != getattr(cls, 'expected_shift_reduce', None):
+ if num_sr == 1:
+ cls.log.warning('1 shift/reduce conflict')
+ elif num_sr > 1:
+ cls.log.warning('%d shift/reduce conflicts', num_sr)
+
+ num_rr = len(lrtable.rr_conflicts)
+ if num_rr != getattr(cls, 'expected_reduce_reduce', None):
+ if num_rr == 1:
+ cls.log.warning('1 reduce/reduce conflict')
+ elif num_rr > 1:
+ cls.log.warning('%d reduce/reduce conflicts', num_rr)
+
+ cls._lrtable = lrtable
+ return True
+
+ @classmethod
+ def __collect_rules(cls, definitions):
+ '''
+ Collect all of the tagged grammar rules
+ '''
+ rules = [ (name, value) for name, value in definitions
+ if callable(value) and hasattr(value, 'rules') ]
+ return rules
+
+ # ----------------------------------------------------------------------
+ # Build the LALR(1) tables. definitions is a list of (name, item) tuples
+ # of all definitions provided in the class, listed in the order in which
+ # they were defined. This method is triggered by a metaclass.
+ # ----------------------------------------------------------------------
+ @classmethod
+ def _build(cls, definitions):
+ if vars(cls).get('_build', False):
+ return
+
+ # Collect all of the grammar rules from the class definition
+ rules = cls.__collect_rules(definitions)
+
+ # Validate other parts of the grammar specification
+ if not cls.__validate_specification():
+ raise YaccError('Invalid parser specification')
+
+ # Build the underlying grammar object
+ cls.__build_grammar(rules)
+
+ # Build the LR tables
+ if not cls.__build_lrtables():
+ raise YaccError('Can\'t build parsing tables')
+
+ if cls.debugfile:
+ with open(cls.debugfile, 'w') as f:
+ f.write(str(cls._grammar))
+ f.write('\n')
+ f.write(str(cls._lrtable))
+ cls.log.info('Parser debugging for %s written to %s', cls.__qualname__, cls.debugfile)
+
+ # ----------------------------------------------------------------------
+ # Parsing Support. This is the parsing runtime that users use to
+ # ----------------------------------------------------------------------
+ def error(self, token):
+ '''
+ Default error handling function. This may be subclassed.
+ '''
+ if token:
+ lineno = getattr(token, 'lineno', 0)
+ if lineno:
+ sys.stderr.write(f'sly: Syntax error at line {lineno}, token={token.type}\n')
+ else:
+ sys.stderr.write(f'sly: Syntax error, token={token.type}')
+ else:
+ sys.stderr.write('sly: Parse error in input. EOF\n')
+
+ def errok(self):
+ '''
+ Clear the error status
+ '''
+ self.errorok = True
+
+ def restart(self):
+ '''
+ Force the parser to restart from a fresh state. Clears the statestack
+ '''
+ del self.statestack[:]
+ del self.symstack[:]
+ sym = YaccSymbol()
+ sym.type = '$end'
+ self.symstack.append(sym)
+ self.statestack.append(0)
+ self.state = 0
+
+ def parse(self, tokens):
+ '''
+ Parse the given input tokens.
+ '''
+ lookahead = None # Current lookahead symbol
+ lookaheadstack = [] # Stack of lookahead symbols
+ actions = self._lrtable.lr_action # Local reference to action table (to avoid lookup on self.)
+ goto = self._lrtable.lr_goto # Local reference to goto table (to avoid lookup on self.)
+ prod = self._grammar.Productions # Local reference to production list (to avoid lookup on self.)
+ defaulted_states = self._lrtable.defaulted_states # Local reference to defaulted states
+ pslice = YaccProduction(None) # Production object passed to grammar rules
+ errorcount = 0 # Used during error recovery
+
+ # Set up the state and symbol stacks
+ self.tokens = tokens
+ self.statestack = statestack = [] # Stack of parsing states
+ self.symstack = symstack = [] # Stack of grammar symbols
+ pslice._stack = symstack # Associate the stack with the production
+ self.restart()
+
+ errtoken = None # Err token
+ while True:
+ # Get the next symbol on the input. If a lookahead symbol
+ # is already set, we just use that. Otherwise, we'll pull
+ # the next token off of the lookaheadstack or from the lexer
+ if self.state not in defaulted_states:
+ if not lookahead:
+ if not lookaheadstack:
+ lookahead = next(tokens, None) # Get the next token
+ else:
+ lookahead = lookaheadstack.pop()
+ if not lookahead:
+ lookahead = YaccSymbol()
+ lookahead.type = '$end'
+
+ # Check the action table
+ ltype = lookahead.type
+ t = actions[self.state].get(ltype)
+ else:
+ t = defaulted_states[self.state]
+
+ if t is not None:
+ if t > 0:
+ # shift a symbol on the stack
+ statestack.append(t)
+ self.state = t
+
+ symstack.append(lookahead)
+ lookahead = None
+
+ # Decrease error count on successful shift
+ if errorcount:
+ errorcount -= 1
+ continue
+
+ if t < 0:
+ # reduce a symbol on the stack, emit a production
+ self.production = p = prod[-t]
+ pname = p.name
+ plen = p.len
+ pslice._namemap = p.namemap
+
+ # Call the production function
+ pslice._slice = symstack[-plen:] if plen else []
+
+ sym = YaccSymbol()
+ sym.type = pname
+ value = p.func(self, pslice)
+ if value is pslice:
+ value = (pname, *(s.value for s in pslice._slice))
+ sym.value = value
+ if plen:
+ del symstack[-plen:]
+ del statestack[-plen:]
+
+ symstack.append(sym)
+ self.state = goto[statestack[-1]][pname]
+ statestack.append(self.state)
+ continue
+
+ if t == 0:
+ n = symstack[-1]
+ result = getattr(n, 'value', None)
+ return result
+
+ if t is None:
+ # We have some kind of parsing error here. To handle
+ # this, we are going to push the current token onto
+ # the tokenstack and replace it with an 'error' token.
+ # If there are any synchronization rules, they may
+ # catch it.
+ #
+ # In addition to pushing the error token, we call call
+ # the user defined error() function if this is the
+ # first syntax error. This function is only called if
+ # errorcount == 0.
+ if errorcount == 0 or self.errorok:
+ errorcount = ERROR_COUNT
+ self.errorok = False
+ if lookahead.type == '$end':
+ errtoken = None # End of file!
+ else:
+ errtoken = lookahead
+
+ tok = self.error(errtoken)
+ if tok:
+ # User must have done some kind of panic
+ # mode recovery on their own. The
+ # returned token is the next lookahead
+ lookahead = tok
+ self.errorok = True
+ continue
+ else:
+ # If at EOF. We just return. Basically dead.
+ if not errtoken:
+ return
+ else:
+ # Reset the error count. Unsuccessful token shifted
+ errorcount = ERROR_COUNT
+
+ # case 1: the statestack only has 1 entry on it. If we're in this state, the
+ # entire parse has been rolled back and we're completely hosed. The token is
+ # discarded and we just keep going.
+
+ if len(statestack) <= 1 and lookahead.type != '$end':
+ lookahead = None
+ self.state = 0
+ # Nuke the lookahead stack
+ del lookaheadstack[:]
+ continue
+
+ # case 2: the statestack has a couple of entries on it, but we're
+ # at the end of the file. nuke the top entry and generate an error token
+
+ # Start nuking entries on the stack
+ if lookahead.type == '$end':
+ # Whoa. We're really hosed here. Bail out
+ return
+
+ if lookahead.type != 'error':
+ sym = symstack[-1]
+ if sym.type == 'error':
+ # Hmmm. Error is on top of stack, we'll just nuke input
+ # symbol and continue
+ lookahead = None
+ continue
+
+ # Create the error symbol for the first time and make it the new lookahead symbol
+ t = YaccSymbol()
+ t.type = 'error'
+
+ if hasattr(lookahead, 'lineno'):
+ t.lineno = lookahead.lineno
+ if hasattr(lookahead, 'index'):
+ t.index = lookahead.index
+ t.value = lookahead
+ lookaheadstack.append(lookahead)
+ lookahead = t
+ else:
+ sym = symstack.pop()
+ statestack.pop()
+ self.state = statestack[-1]
+ continue
+
+ # Call an error function here
+ raise RuntimeError('sly: internal parser error!!!\n')