diff options
Diffstat (limited to 'lib/utils.py')
-rw-r--r-- | lib/utils.py | 253 |
1 files changed, 0 insertions, 253 deletions
diff --git a/lib/utils.py b/lib/utils.py index 549b673..5daa7cf 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -1,4 +1,3 @@ -import itertools import numpy as np import re @@ -115,258 +114,6 @@ def param_slice_eq(a, b, index): return True return False -def prune_dependent_parameters(by_name, parameter_names, correlation_threshold = 0.5): - """ - Remove dependent parameters from aggregate. - - :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. - by_name[name][attribute] must be a list or 1-D numpy array. - by_name[stanamete_or_trans]['param'] must be a list of parameter values. - Other dict members are left as-is - :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. - :param correlation_threshold: Remove parameter if absolute correlation exceeds this threshold (default: 0.5) - - Model generation (and its components, such as relevant parameter detection and least squares optimization) only works if input variables (i.e., parameters) - are independent of each other. This function computes the correlation coefficient for each pair of parameters and removes those which depend on each other. - For each pair of dependent parameters, the lexically greater one is removed (e.g. "a" and "b" -> "b" is removed). - """ - - parameter_indices_to_remove = list() - for parameter_combination in itertools.product(range(len(parameter_names)), range(len(parameter_names))): - index_1, index_2 = parameter_combination - if index_1 >= index_2: - continue - parameter_values = [list(), list()] # both parameters have a value - parameter_values_1 = list() # parameter 1 has a value - parameter_values_2 = list() # parameter 2 has a value - for name in by_name: - for measurement in by_name[name]['param']: - value_1 = measurement[index_1] - value_2 = measurement[index_2] - if is_numeric(value_1): - parameter_values_1.append(value_1) - if is_numeric(value_2): - parameter_values_2.append(value_2) - if is_numeric(value_1) and is_numeric(value_2): - parameter_values[0].append(value_1) - parameter_values[1].append(value_2) - if len(parameter_values[0]): - # Calculating the correlation coefficient only makes sense when neither value is constant - if np.std(parameter_values_1) != 0 and np.std(parameter_values_2) != 0: - correlation = np.corrcoef(parameter_values)[0][1] - if correlation != np.nan and np.abs(correlation) > correlation_threshold: - print('[!] Parameters {} <-> {} are correlated with coefficcient {}'.format(parameter_names[index_1], parameter_names[index_2], correlation)) - if len(parameter_values_1) < len(parameter_values_2): - index_to_remove = index_1 - else: - index_to_remove = index_2 - print(' Removing parameter {}'.format(parameter_names[index_to_remove])) - parameter_indices_to_remove.append(index_to_remove) - remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove) - -def remove_parameters_by_indices(by_name, parameter_names, parameter_indices_to_remove): - """ - Remove parameters listed in `parameter_indices` from aggregate `by_name` and `parameter_names`. - - :param by_name: measurements partitioned by state/transition/... name and attribute, edited in-place. - by_name[name][attribute] must be a list or 1-D numpy array. - by_name[stanamete_or_trans]['param'] must be a list of parameter values. - Other dict members are left as-is - :param parameter_names: List of parameter names in the order they are used in by_name[name]['param'], edited in-place. - :param parameter_indices_to_remove: List of parameter indices to be removed - """ - - # Start removal from the end of the list to avoid renumbering of list elemenets - for parameter_index in sorted(parameter_indices_to_remove, reverse = True): - for name in by_name: - for measurement in by_name[name]['param']: - measurement.pop(parameter_index) - parameter_names.pop(parameter_index) - -def compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_trans, attribute, verbose = False): - """ - Compute standard deviation and correlation coefficient for various data partitions. - - It is strongly recommended to vary all parameter values evenly across partitions. - For instance, given two parameters, providing only the combinations - (1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results. - It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values) - - :param by_name: ground truth partitioned by state/transition name. - by_name[state_or_trans][attribute] must be a list or 1-D numpy array. - by_name[state_or_trans]['param'] must be a list of parameter values - corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the - first ground truth element has the (lexically) first parameter set to 1, - the second to 2 and the third to 3. - :param by_param: ground truth partitioned by state/transition name and parameters. - by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array. - :param parameter_names: list of parameter names, must have the same order as the parameter - values in by_param (lexical sorting is recommended). - :param arg_count: dict providing the number of functions args ("local parameters") for each function. - :param state_or_trans: state or transition name, e.g. 'send' or 'TX' - :param attribute: model attribute, e.g. 'power' or 'duration' - :param verbose: print warning if some parameter partitions are too small for fitting - - :returns: a dict with the following content: - std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute] - std_param_lut -- static parameter-aware model error: mean stddev of by_param[(state_or_trans, *)][attribute] - std_by_param -- static parameter-aware model error ignoring a single parameter. - dictionary with one key per parameter. The value is the mean stddev - of measurements where all other parameters are fixed and the parameter - in question is variable. E.g. std_by_param['X'] is the mean stddev of - by_param[(state_or_trans, (X=*, Y=..., Z=...))][attribute]. - std_by_arg -- same, but ignoring a single function argument - Only set if state_or_trans appears in arg_count, empty dict otherwise. - corr_by_param -- correlation coefficient - corr_by_arg -- same, but ignoring a single function argument - Only set if state_or_trans appears in arg_count, empty dict otherwise. - """ - ret = { - 'std_static' : np.std(by_name[state_or_trans][attribute]), - 'std_param_lut' : np.mean([np.std(by_param[x][attribute]) for x in by_param.keys() if x[0] == state_or_trans]), - 'std_by_param' : {}, - 'std_by_param_values' : {}, - 'lut_by_param_values' : {}, - 'std_by_arg' : [], - 'std_by_arg_values' : [], - 'lut_by_arg_values' : [], - 'corr_by_param' : {}, - 'corr_by_arg' : [], - } - - np.seterr('raise') - - param_values = distinct_param_values(by_name, state_or_trans) - - for param_idx, param in enumerate(parameter_names): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, param_idx, verbose) - ret['std_by_param'][param] = mean_std - ret['std_by_param_values'][param] = std_matrix - ret['lut_by_param_values'][param] = lut_matrix - ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx) - if arg_support_enabled and state_or_trans in arg_count: - for arg_index in range(arg_count[state_or_trans]): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) - ret['std_by_arg'].append(mean_std) - ret['std_by_arg_values'].append(std_matrix) - ret['lut_by_arg_values'].append(lut_matrix) - ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, attribute, len(parameter_names) + arg_index)) - - return ret - -def distinct_param_values(by_name, state_or_tran): - """ - Return the distinct values of each parameter in by_name[state_or_tran]. - - E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), - this function returns [[1, 0], [1, 2, 3]]. - Note that the order is not guaranteed to be deterministic at the moment. - - Also note that this function deliberately also consider None - (uninitialized parameter with unknown value) as a distinct value. Benchmarks - and drivers must ensure that a parameter is only None when its value is - not important yet, e.g. a packet length parameter must only be None when - write() or similar has not been called yet. Other parameters should always - be initialized when leaving UNINITIALIZED. - """ - # TODO a set() is an _unordered_ collection, so this must be converted to - # an OrderedDict or a list with a duplicate-pruning step - distinct_values = [set() for i in range(len(by_name[state_or_tran]['param'][0]))] - for param_tuple in by_name[state_or_tran]['param']: - for i in range(len(param_tuple)): - distinct_values[i].add(param_tuple[i]) - - # Convert sets to lists - distinct_values = list(map(list, distinct_values)) - return distinct_values - -def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): - u""" - Calculate standard deviations for a static model where all parameters but param_index are constant. - - :param by_param: measurements sorted by key/transition name and parameter values - :param state_or_tran: state or transition name (-> by_param[(state_or_tran, *)]) - :param attribute: model attribute, e.g. 'power' or 'duration' - (-> by_param[(state_or_tran, *)][attribute]) - :param param_index: index of variable parameter - :returns: (stddev matrix, mean stddev) - - Returns the mean standard deviation of all measurements of 'attribute' - (e.g. power consumption or timeout) for state/transition 'state_or_tran' where - parameter 'param_index' is dynamic and all other parameters are fixed. - I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then - this function returns the mean of the standard deviations of (a=1, b=*, c=1), - (a=1, b=*, c=2), and so on. - Also returns an (n-1)-dimensional array (where n is the number of parameters) - giving the standard deviation of each individual partition. E.g. for - param_index == 2 and 4 parameters, array[a][b][d] is the - stddev of measurements with param0 == a, param1 == b, param2 variable, - and param3 == d. - """ - param_values = list(remove_index_from_tuple(all_param_values, param_index)) - info_shape = tuple(map(len, param_values)) - - # We will calculate the mean over the entire matrix later on. We cannot - # guarantee that each entry will be filled in this loop (e.g. transitions - # whose arguments are combined using 'zip' rather than 'cartesian' always - # have missing parameter combinations), we pre-fill it with NaN and use - # np.nanmean to skip those when calculating the mean. - stddev_matrix = np.full(info_shape, np.nan) - lut_matrix = np.full(info_shape, np.nan) - - for param_value in itertools.product(*param_values): - param_partition = list() - std_list = list() - for k, v in by_param.items(): - if k[0] == state_or_tran and (*k[1][:param_index], *k[1][param_index+1:]) == param_value: - param_partition.extend(v[attribute]) - std_list.append(np.std(v[attribute])) - - if len(param_partition) > 1: - matrix_index = list(range(len(param_value))) - for i in range(len(param_value)): - matrix_index[i] = param_values[i].index(param_value[i]) - matrix_index = tuple(matrix_index) - stddev_matrix[matrix_index] = np.std(param_partition) - lut_matrix[matrix_index] = np.mean(std_list) - # This can (and will) happen in normal operation, e.g. when a transition's - # arguments are combined using 'zip' rather than 'cartesian'. - #elif len(param_partition) == 1: - # vprint(verbose, '[W] parameter value partition for {} contains only one element -- skipping'.format(param_value)) - #else: - # vprint(verbose, '[W] parameter value partition for {} is empty'.format(param_value)) - - if np.all(np.isnan(stddev_matrix)): - vprint(verbose, '[W] {}/{} parameter #{} has no data partitions -- how did this even happen?'.format(state_or_tran, attribute, param_index)) - vprint(verbose, 'stddev_matrix = {}'.format(stddev_matrix)) - return stddev_matrix, 0. - - return stddev_matrix, np.nanmean(stddev_matrix), lut_matrix #np.mean([np.std(partition) for partition in partitions]) - -def _corr_by_param(by_name, state_or_trans, attribute, param_index): - if _all_params_are_numeric(by_name[state_or_trans], param_index): - param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param'])))) - try: - return np.corrcoef(by_name[state_or_trans][attribute], param_values)[0, 1] - except FloatingPointError: - # Typically happens when all parameter values are identical. - # Building a correlation coefficient is pointless in this case - # -> assume no correlation - return 0. - except ValueError: - print('[!] Exception in _corr_by_param(by_name, state_or_trans={}, attribute={}, param_index={})'.format(state_or_trans, attribute, param_index)) - print('[!] while executing np.corrcoef(by_name[{}][{}]={}, {}))'.format(state_or_trans, attribute, by_name[state_or_trans][attribute], param_values)) - raise - else: - return 0. - -def _all_params_are_numeric(data, param_idx): - """Check if all `data['param'][*][param_idx]` elements are numeric, as reported by `utils.is_numeric`.""" - param_values = list(map(lambda x: x[param_idx], data['param'])) - if len(list(filter(is_numeric, param_values))) == len(param_values): - return True - return False - class OptionalTimingAnalysis: def __init__(self, enabled = True): self.enabled = enabled |