diff options
Diffstat (limited to 'lib/utils.py')
-rw-r--r-- | lib/utils.py | 37 |
1 files changed, 20 insertions, 17 deletions
diff --git a/lib/utils.py b/lib/utils.py index 0910d8a..549b673 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -23,6 +23,10 @@ def is_numeric(n): except ValueError: return False +def is_power_of_two(n): + """Check if `n` is a power of two (1, 2, 4, 8, 16, ...).""" + return n > 0 and (n & (n-1)) == 0 + def float_or_nan(n): """Convert `n` to float (if numeric) or NaN.""" if n == None: @@ -34,7 +38,7 @@ def float_or_nan(n): def soft_cast_int(n): """ - Convert `n` to int, if possible. + Convert `n` to int (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. @@ -48,7 +52,7 @@ def soft_cast_int(n): def soft_cast_float(n): """ - Convert `n` to float, if possible. + Convert `n` to float (if numeric) or return it as-is. If `n` is empty, returns None. If `n` is not numeric, it is left unchanged. @@ -232,15 +236,17 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat np.seterr('raise') + param_values = distinct_param_values(by_name, state_or_trans) + for param_idx, param in enumerate(parameter_names): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, param_idx, verbose) + std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, param_idx, verbose) ret['std_by_param'][param] = mean_std ret['std_by_param_values'][param] = std_matrix ret['lut_by_param_values'][param] = lut_matrix ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, attribute, param_idx) if arg_support_enabled and state_or_trans in arg_count: for arg_index in range(arg_count[state_or_trans]): - std_matrix, mean_std, lut_matrix = _std_by_param(by_param, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) + std_matrix, mean_std, lut_matrix = _std_by_param(by_param, param_values, state_or_trans, attribute, len(parameter_names) + arg_index, verbose) ret['std_by_arg'].append(mean_std) ret['std_by_arg_values'].append(std_matrix) ret['lut_by_arg_values'].append(lut_matrix) @@ -248,13 +254,13 @@ def compute_param_statistics(by_name, by_param, parameter_names, arg_count, stat return ret -def _param_values(by_param, state_or_tran): +def distinct_param_values(by_name, state_or_tran): """ - Return the distinct values of each parameter in by_param. + Return the distinct values of each parameter in by_name[state_or_tran]. - E.g. if by_param.keys() contains the distinct parameter values (1, 1), (1, 2), (1, 3), (0, 3), + E.g. if by_name[state_or_tran]['param'] contains the distinct entries (1, 1), (1, 2), (1, 3), (0, 3), this function returns [[1, 0], [1, 2, 3]]. - Note that the order is not deterministic at the moment. + Note that the order is not guaranteed to be deterministic at the moment. Also note that this function deliberately also consider None (uninitialized parameter with unknown value) as a distinct value. Benchmarks @@ -262,21 +268,19 @@ def _param_values(by_param, state_or_tran): not important yet, e.g. a packet length parameter must only be None when write() or similar has not been called yet. Other parameters should always be initialized when leaving UNINITIALIZED. - """ - param_tuples = list(map(lambda x: x[1], filter(lambda x: x[0] == state_or_tran, by_param.keys()))) - distinct_values = [set() for i in range(len(param_tuples[0]))] - for param_tuple in param_tuples: + # TODO a set() is an _unordered_ collection, so this must be converted to + # an OrderedDict or a list with a duplicate-pruning step + distinct_values = [set() for i in range(len(by_name[state_or_tran]['param'][0]))] + for param_tuple in by_name[state_or_tran]['param']: for i in range(len(param_tuple)): distinct_values[i].add(param_tuple[i]) - # TODO returned values must have a deterministic order - # Convert sets to lists distinct_values = list(map(list, distinct_values)) return distinct_values -def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = False): +def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index, verbose = False): u""" Calculate standard deviations for a static model where all parameters but param_index are constant. @@ -299,8 +303,7 @@ def _std_by_param(by_param, state_or_tran, attribute, param_index, verbose = Fal stddev of measurements with param0 == a, param1 == b, param2 variable, and param3 == d. """ - # TODO precalculate or cache info_shape (it only depends on state_or_tran) - param_values = list(remove_index_from_tuple(_param_values(by_param, state_or_tran), param_index)) + param_values = list(remove_index_from_tuple(all_param_values, param_index)) info_shape = tuple(map(len, param_values)) # We will calculate the mean over the entire matrix later on. We cannot |