summaryrefslogtreecommitdiff
path: root/lib/utils.py
diff options
context:
space:
mode:
Diffstat (limited to 'lib/utils.py')
-rw-r--r--lib/utils.py92
1 files changed, 92 insertions, 0 deletions
diff --git a/lib/utils.py b/lib/utils.py
index 405d148..b496a7b 100644
--- a/lib/utils.py
+++ b/lib/utils.py
@@ -1,3 +1,7 @@
+import numpy as np
+
+arg_support_enabled = True
+
def is_numeric(n):
if n == None:
return False
@@ -6,3 +10,91 @@ def is_numeric(n):
return True
except ValueError:
return False
+
+def param_slice_eq(a, b, index):
+ """
+ Check if by_param keys a and b are identical, ignoring the parameter at index.
+
+ parameters:
+ a, b -- (state/transition name, [parameter0 value, parameter1 value, ...])
+ index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.)
+
+ Returns True iff a and b have the same state/transition name, and all
+ parameters at positions != index are identical.
+
+ example:
+ ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True
+ ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False
+ """
+ if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
+ return True
+ return False
+
+def compute_param_statistics(by_name, by_param, parameter_names, num_args, state_or_trans, key):
+ ret = {
+ 'std_static' : np.std(by_name[state_or_trans][key]),
+ 'std_param_lut' : np.mean([np.std(by_param[x][key]) for x in by_param.keys() if x[0] == state_or_trans]),
+ 'std_by_param' : {},
+ 'std_by_arg' : [],
+ 'corr_by_param' : {},
+ 'corr_by_arg' : [],
+ }
+
+ for param_idx, param in enumerate(parameter_names):
+ ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, key, param_idx)
+ ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, key, param_idx)
+ if arg_support_enabled and state_or_trans in num_args:
+ for arg_index in range(num_args[state_or_trans]):
+ ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, key, len(parameter_names) + arg_index))
+ ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, key, len(parameter_names) + arg_index))
+
+ return ret
+
+def _mean_std_by_param(by_param, state_or_tran, key, param_index):
+ u"""
+ Calculate the mean standard deviation for a static model where all parameters but param_index are constant.
+
+ arguments:
+ by_param -- measurements sorted by key/transition name and parameter values
+ state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)])
+ key -- model attribute, e.g. 'power' or 'duration'
+ (-> by_param[(state_or_tran, *)][key])
+ param_index -- index of variable parameter
+
+ Returns the mean standard deviation of all measurements of 'key'
+ (e.g. power consumption or timeout) for state/transition 'state_or_tran' where
+ parameter 'param_index' is dynamic and all other parameters are fixed.
+ I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then
+ this function returns the mean of the standard deviations of (a=1, b=*, c=1),
+ (a=1, b=*, c=2), and so on.
+ """
+ partitions = []
+ for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
+ param_partition = []
+ for k, v in by_param.items():
+ if param_slice_eq(k, param_value, param_index):
+ param_partition.extend(v[key])
+ if len(param_partition):
+ partitions.append(param_partition)
+ else:
+ print('[W] parameter value partition for {} is empty'.format(param_value))
+ return np.mean([np.std(partition) for partition in partitions])
+
+def _corr_by_param(by_name, state_or_trans, key, param_index):
+ if _all_params_are_numeric(by_name[state_or_trans], param_index):
+ param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param']))))
+ try:
+ return np.corrcoef(by_name[state_or_trans][key], param_values)[0, 1]
+ except FloatingPointError as fpe:
+ # Typically happens when all parameter values are identical.
+ # Building a correlation coefficient is pointless in this case
+ # -> assume no correlation
+ return 0.
+ else:
+ return 0.
+
+def _all_params_are_numeric(data, param_idx):
+ param_values = list(map(lambda x: x[param_idx], data['param']))
+ if len(list(filter(is_numeric, param_values))) == len(param_values):
+ return True
+ return False