diff options
Diffstat (limited to 'lib/utils.py')
-rw-r--r-- | lib/utils.py | 92 |
1 files changed, 92 insertions, 0 deletions
diff --git a/lib/utils.py b/lib/utils.py index 405d148..b496a7b 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -1,3 +1,7 @@ +import numpy as np + +arg_support_enabled = True + def is_numeric(n): if n == None: return False @@ -6,3 +10,91 @@ def is_numeric(n): return True except ValueError: return False + +def param_slice_eq(a, b, index): + """ + Check if by_param keys a and b are identical, ignoring the parameter at index. + + parameters: + a, b -- (state/transition name, [parameter0 value, parameter1 value, ...]) + index -- parameter index to ignore (0 -> parameter0, 1 -> parameter1, etc.) + + Returns True iff a and b have the same state/transition name, and all + parameters at positions != index are identical. + + example: + ('foo', [1, 4]), ('foo', [2, 4]), 0 -> True + ('foo', [1, 4]), ('foo', [2, 4]), 1 -> False + """ + if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]: + return True + return False + +def compute_param_statistics(by_name, by_param, parameter_names, num_args, state_or_trans, key): + ret = { + 'std_static' : np.std(by_name[state_or_trans][key]), + 'std_param_lut' : np.mean([np.std(by_param[x][key]) for x in by_param.keys() if x[0] == state_or_trans]), + 'std_by_param' : {}, + 'std_by_arg' : [], + 'corr_by_param' : {}, + 'corr_by_arg' : [], + } + + for param_idx, param in enumerate(parameter_names): + ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, key, param_idx) + ret['corr_by_param'][param] = _corr_by_param(by_name, state_or_trans, key, param_idx) + if arg_support_enabled and state_or_trans in num_args: + for arg_index in range(num_args[state_or_trans]): + ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, key, len(parameter_names) + arg_index)) + ret['corr_by_arg'].append(_corr_by_param(by_name, state_or_trans, key, len(parameter_names) + arg_index)) + + return ret + +def _mean_std_by_param(by_param, state_or_tran, key, param_index): + u""" + Calculate the mean standard deviation for a static model where all parameters but param_index are constant. + + arguments: + by_param -- measurements sorted by key/transition name and parameter values + state_or_tran -- state or transition name (-> by_param[(state_or_tran, *)]) + key -- model attribute, e.g. 'power' or 'duration' + (-> by_param[(state_or_tran, *)][key]) + param_index -- index of variable parameter + + Returns the mean standard deviation of all measurements of 'key' + (e.g. power consumption or timeout) for state/transition 'state_or_tran' where + parameter 'param_index' is dynamic and all other parameters are fixed. + I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b, then + this function returns the mean of the standard deviations of (a=1, b=*, c=1), + (a=1, b=*, c=2), and so on. + """ + partitions = [] + for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()): + param_partition = [] + for k, v in by_param.items(): + if param_slice_eq(k, param_value, param_index): + param_partition.extend(v[key]) + if len(param_partition): + partitions.append(param_partition) + else: + print('[W] parameter value partition for {} is empty'.format(param_value)) + return np.mean([np.std(partition) for partition in partitions]) + +def _corr_by_param(by_name, state_or_trans, key, param_index): + if _all_params_are_numeric(by_name[state_or_trans], param_index): + param_values = np.array(list((map(lambda x: x[param_index], by_name[state_or_trans]['param'])))) + try: + return np.corrcoef(by_name[state_or_trans][key], param_values)[0, 1] + except FloatingPointError as fpe: + # Typically happens when all parameter values are identical. + # Building a correlation coefficient is pointless in this case + # -> assume no correlation + return 0. + else: + return 0. + +def _all_params_are_numeric(data, param_idx): + param_values = list(map(lambda x: x[param_idx], data['param'])) + if len(list(filter(is_numeric, param_values))) == len(param_values): + return True + return False |