summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rwxr-xr-xlib/automata.py27
-rw-r--r--lib/dfatool.py6
2 files changed, 27 insertions, 6 deletions
diff --git a/lib/automata.py b/lib/automata.py
index 38a2645..f1f2909 100755
--- a/lib/automata.py
+++ b/lib/automata.py
@@ -14,9 +14,11 @@ def _dict_to_list(input_dict: dict) -> list:
class PTAAttribute:
- def __init__(self, value: float = 0, function: AnalyticFunction = None):
+ def __init__(self, value: float = 0, function: AnalyticFunction = None, value_error=None, function_error=None):
self.value = value
self.function = function
+ self.value_error = value_error
+ self.function_error = function_error
def __repr__(self):
if self.function is not None:
@@ -30,13 +32,15 @@ class PTAAttribute:
def to_json(self):
ret = {
- 'static': self.value
+ 'static': self.value,
+ 'static_error': self.value_error,
}
if self.function:
ret['function'] = {
'raw': self.function._model_str,
'regression_args': list(self.function._regression_args)
}
+ ret['function_error'] = self.function_error
return ret
@classmethod
@@ -954,13 +958,17 @@ class PTA:
return total_energy, total_duration, state, param_dict
- def update(self, static_model, param_model):
+ def update(self, static_model, param_model, static_error=None, analytic_error=None):
for state in self.state.values():
if state.name != 'UNINITIALIZED':
try:
state.power.value = static_model(state.name, 'power')
+ if static_error is not None:
+ state.power.value_error = static_error[state.name]['power']
if param_model(state.name, 'power'):
state.power.function = param_model(state.name, 'power')['function']
+ if analytic_error is not None:
+ state.power.function_error = analytic_error[state.name]['power']
except KeyError:
print('[W] skipping model update of state {} due to missing data'.format(state.name))
pass
@@ -969,13 +977,24 @@ class PTA:
transition.duration.value = static_model(transition.name, 'duration')
if param_model(transition.name, 'duration'):
transition.duration.function = param_model(transition.name, 'duration')['function']
+ if analytic_error is not None:
+ transition.duration.function_error = analytic_error[transition.name]['duration']
transition.energy.value = static_model(transition.name, 'energy')
if param_model(transition.name, 'energy'):
transition.energy.function = param_model(transition.name, 'energy')['function']
+ if analytic_error is not None:
+ transition.energy.function_error = analytic_error[transition.name]['energy']
if transition.is_interrupt:
transition.timeout.value = static_model(transition.name, 'timeout')
if param_model(transition.name, 'timeout'):
transition.timeout.function = param_model(transition.name, 'timeout')['function']
+ if analytic_error is not None:
+ transition.timeout.function_error = analytic_error[transition.name]['timeout']
+
+ if static_error is not None:
+ transition.duration.value_error = static_error[transition.name]['duration']
+ transition.energy.value_error = static_error[transition.name]['energy']
+ transition.timeout.value_error = static_error[transition.name]['timeout']
except KeyError:
- print('[W] skipping model update of transition {} due to missing data'.format(state.name))
+ print('[W] skipping model update of transition {} due to missing data'.format(transition.name))
pass
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 9583d73..607028e 100644
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -2025,8 +2025,10 @@ class PTAModel:
def to_json(self):
static_model = self.get_static()
- _, param_info = self.get_fitted()
- self.pta.update(static_model, param_info)
+ static_quality = self.assess(static_model)
+ param_model, param_info = self.get_fitted()
+ analytic_quality = self.assess(param_model)
+ self.pta.update(static_model, param_info, static_error=static_quality['by_name'], analytic_error=analytic_quality['by_name'])
return self.pta.to_json()
def states(self):