diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/dfatool.py | 282 | ||||
-rw-r--r-- | lib/validation.py | 241 |
2 files changed, 259 insertions, 264 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 0596ad8..392f5a6 100644 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -16,13 +16,9 @@ from multiprocessing import Pool from .functions import analytic from .functions import AnalyticFunction from .parameters import ParamStats -from .utils import ( - is_numeric, - soft_cast_int, - param_slice_eq, - remove_index_from_tuple, -) +from .utils import is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple from .utils import by_name_to_by_param, match_parameter_values, running_mean +from .validation import CrossValidator logger = logging.getLogger(__name__) @@ -196,241 +192,6 @@ class KeysightCSV: return timestamps, currents -def _xv_partitions_kfold(length, k=10): - """ - Return k pairs of training and validation sets for k-fold cross-validation on `length` items. - - In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training. - As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set. - - Note that this function operates on indices, not data. - """ - pairs = [] - num_slices = k - indexes = np.arange(length) - for i in range(num_slices): - training = np.delete(indexes, slice(i, None, num_slices)) - validation = indexes[i::num_slices] - pairs.append((training, validation)) - return pairs - - -def _xv_partition_montecarlo(length): - """ - Return training and validation set for Monte Carlo cross-validation on `length` items. - - This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices. - - The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3. - - Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5] - """ - shuffled = np.random.permutation(np.arange(length)) - border = int(length * float(2) / 3) - training = shuffled[:border] - validation = shuffled[border:] - return (training, validation) - - -class CrossValidator: - """ - Cross-Validation helper for model generation. - - Given a set of measurements and a model class, it will partition the - data into training and validation sets, train the model on the training - set, and assess its quality on the validation set. This is repeated - several times depending on cross-validation algorithm and configuration. - Reports the mean model error over all cross-validation runs. - """ - - def __init__(self, model_class, by_name, parameters, arg_count): - """ - Create a new CrossValidator object. - - Does not perform cross-validation yet. - - arguments: - model_class -- model class/type used for model synthesis, - e.g. PTAModel or AnalyticModel. model_class must have a - constructor accepting (by_name, parameters, arg_count) - and provide an `assess` method. - by_name -- measurements aggregated by state/transition/function/... name. - Layout: by_name[name][attribute] = list of data. Additionally, - by_name[name]['attributes'] must be set to the list of attributes, - e.g. ['power'] or ['duration', 'energy']. - """ - self.model_class = model_class - self.by_name = by_name - self.names = sorted(by_name.keys()) - self.parameters = sorted(parameters) - self.arg_count = arg_count - - def kfold(self, model_getter, k=10): - """ - Perform k-fold cross-validation and return average model quality. - - The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner. - After creating a model for the training set, the - model type returned by model_getter is evaluated on the validation set. - This is repeated k times; the average of all measures is returned to the user. - - arguments: - model_getter -- function with signature (model_object) -> model, - e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware - model with automatic parameter detection. - k -- step size for k-fold cross-validation. The validation set contains 100/k % of data. - - return value: - dict of model quality measures. - { - 'by_name' : { - for each name: { - for each attribute: { - 'mae' : mean of all mean absolute errors - 'mae_list' : list of the individual MAE values encountered during cross-validation - 'smape' : mean of all symmetric mean absolute percentage errors - 'smape_list' : list of the individual SMAPE values encountered during cross-validation - } - } - } - } - """ - - # training / validation subsets for each state and transition - subsets_by_name = dict() - training_and_validation_sets = list() - - for name in self.names: - sample_count = len(self.by_name[name]["param"]) - subsets_by_name[name] = list() - subsets_by_name[name] = _xv_partitions_kfold(sample_count, k) - - for i in range(k): - training_and_validation_sets.append(dict()) - for name in self.names: - training_and_validation_sets[i][name] = subsets_by_name[name][i] - - return self._generic_xv(model_getter, training_and_validation_sets) - - def montecarlo(self, model_getter, count=200): - """ - Perform Monte Carlo cross-validation and return average model quality. - - The by_name data is randomly divided into 2/3 training and 1/3 - validation. After creating a model for the training set, the - model type returned by model_getter is evaluated on the validation set. - This is repeated count times (defaulting to 200); the average of all - measures is returned to the user. - - arguments: - model_getter -- function with signature (model_object) -> model, - e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware - model with automatic parameter detection. - count -- number of validation runs to perform, defaults to 200 - - return value: - dict of model quality measures. - { - 'by_name' : { - for each name: { - for each attribute: { - 'mae' : mean of all mean absolute errors - 'mae_list' : list of the individual MAE values encountered during cross-validation - 'smape' : mean of all symmetric mean absolute percentage errors - 'smape_list' : list of the individual SMAPE values encountered during cross-validation - } - } - } - } - """ - - # training / validation subsets for each state and transition - subsets_by_name = dict() - training_and_validation_sets = list() - - for name in self.names: - sample_count = len(self.by_name[name]["param"]) - subsets_by_name[name] = list() - for _ in range(count): - subsets_by_name[name].append(_xv_partition_montecarlo(sample_count)) - - for i in range(count): - training_and_validation_sets.append(dict()) - for name in self.names: - training_and_validation_sets[i][name] = subsets_by_name[name][i] - - return self._generic_xv(model_getter, training_and_validation_sets) - - def _generic_xv(self, model_getter, training_and_validation_sets): - ret = {"by_name": dict()} - - for name in self.names: - ret["by_name"][name] = dict() - for attribute in self.by_name[name]["attributes"]: - ret["by_name"][name][attribute] = { - "mae_list": list(), - "smape_list": list(), - } - - for training_and_validation_by_name in training_and_validation_sets: - res = self._single_xv(model_getter, training_and_validation_by_name) - for name in self.names: - for attribute in self.by_name[name]["attributes"]: - ret["by_name"][name][attribute]["mae_list"].append( - res["by_name"][name][attribute]["mae"] - ) - ret["by_name"][name][attribute]["smape_list"].append( - res["by_name"][name][attribute]["smape"] - ) - - for name in self.names: - for attribute in self.by_name[name]["attributes"]: - ret["by_name"][name][attribute]["mae"] = np.mean( - ret["by_name"][name][attribute]["mae_list"] - ) - ret["by_name"][name][attribute]["smape"] = np.mean( - ret["by_name"][name][attribute]["smape_list"] - ) - - return ret - - def _single_xv(self, model_getter, tv_set_dict): - training = dict() - validation = dict() - for name in self.names: - training[name] = {"attributes": self.by_name[name]["attributes"]} - validation[name] = {"attributes": self.by_name[name]["attributes"]} - - if "isa" in self.by_name[name]: - training[name]["isa"] = self.by_name[name]["isa"] - validation[name]["isa"] = self.by_name[name]["isa"] - - training_subset, validation_subset = tv_set_dict[name] - - for attribute in self.by_name[name]["attributes"]: - self.by_name[name][attribute] = np.array(self.by_name[name][attribute]) - training[name][attribute] = self.by_name[name][attribute][ - training_subset - ] - validation[name][attribute] = self.by_name[name][attribute][ - validation_subset - ] - - # We can't use slice syntax for 'param', which may contain strings and other odd values - training[name]["param"] = list() - validation[name]["param"] = list() - for idx in training_subset: - training[name]["param"].append(self.by_name[name]["param"][idx]) - for idx in validation_subset: - validation[name]["param"].append(self.by_name[name]["param"][idx]) - - training_data = self.model_class(training, self.parameters, self.arg_count) - training_model = model_getter(training_data) - validation_data = self.model_class(validation, self.parameters, self.arg_count) - - return validation_data.assess(training_model) - - def _preprocess_mimosa(measurement): setup = measurement["setup"] mim = MIMOSA( @@ -538,9 +299,7 @@ class TimingData: transitions = list( filter(lambda x: x["isa"] == "transition", trace["trace"]) ) - self.traces.append( - {"id": trace["id"], "trace": transitions,} - ) + self.traces.append({"id": trace["id"], "trace": transitions}) for i, trace in enumerate(self.traces): trace["orig_id"] = trace["id"] trace["id"] = i @@ -1376,7 +1135,7 @@ class RawData: ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e="; ".join(measurement["datasource_errors"]), - ), + ) ) continue @@ -1398,7 +1157,7 @@ class RawData: ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e=measurement["error"], - ), + ) ) elif version == 2: if self._measurement_is_valid_2(measurement): @@ -1410,12 +1169,12 @@ class RawData: ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e=measurement["error"], - ), + ) ) logger.info( "{num_valid:d}/{num_total:d} measurements are valid".format( num_valid=num_valid, num_total=len(measurements) - ), + ) ) if version == 0: self.traces = self._concatenate_traces(self.traces_by_fileno) @@ -1834,7 +1593,7 @@ class AnalyticModel: except RuntimeWarning: logger.warning("Got no data for {} {}".format(name, key)) except FloatingPointError as fpe: - logger.warning("Got no data for {} {}: {}".format(name, key, fpe),) + logger.warning("Got no data for {} {}: {}".format(name, key, fpe)) return model def param_index(self, param_name): @@ -2000,9 +1759,7 @@ class AnalyticModel: measures = regression_measures(predicted_data, elem[attribute]) detailed_results[name][attribute] = measures - return { - "by_name": detailed_results, - } + return {"by_name": detailed_results} def to_json(self): # TODO @@ -2230,7 +1987,7 @@ class PTAModel: except RuntimeWarning: logger.warning("Got no data for {} {}".format(name, key)) except FloatingPointError as fpe: - logger.warning("Got no data for {} {}: {}".format(name, key, fpe),) + logger.warning("Got no data for {} {}: {}".format(name, key, fpe)) return model def get_static(self, use_mean=False): @@ -2729,7 +2486,7 @@ class EnergyTraceLog: logger.debug( "got {} samples with {} seconds of log data ({} Hz)".format( data_count, m_duration_us * 1e-6, self.sample_rate - ), + ) ) return ( @@ -2839,14 +2596,14 @@ class EnergyTraceLog: logger.debug( '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format( offline_index, bc, start, stop, end - ), + ) ) if bc != name: - logger.error('mismatch: expected "{}", got "{}"'.format(name, bc),) + logger.error('mismatch: expected "{}", got "{}"'.format(name, bc)) logger.debug( "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format( offline_index, end, end + duration - ), + ) ) transition_start_index = self.ts_to_index(end) @@ -2861,7 +2618,7 @@ class EnergyTraceLog: offline_index, transition_start_index / self.sample_rate, transition_done_index / self.sample_rate, - ), + ) ) transition_power_W = self.interval_power[ @@ -2959,7 +2716,7 @@ class EnergyTraceLog: logger.debug( "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format( start_ts, sync_threshold_power * 1e3 - ), + ) ) sync_area_start = None @@ -2993,7 +2750,7 @@ class EnergyTraceLog: logger.debug( "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format( sync_start_ts, sync_end_ts, len(barcode_data) - ), + ) ) bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data) @@ -3440,10 +3197,7 @@ class MIMOSA: } ) prevsubidx = subidx - substates = { - "threshold": thr, - "states": statelist, - } + substates = {"threshold": thr, "states": statelist} isa = "state" if not is_state: diff --git a/lib/validation.py b/lib/validation.py new file mode 100644 index 0000000..98d49c1 --- /dev/null +++ b/lib/validation.py @@ -0,0 +1,241 @@ +#!/usr/bin/env python3 + +import logging +import numpy as np + +logger = logging.getLogger(__name__) + + +def _xv_partitions_kfold(length, k=10): + """ + Return k pairs of training and validation sets for k-fold cross-validation on `length` items. + + In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training. + As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set. + + Note that this function operates on indices, not data. + """ + pairs = [] + num_slices = k + indexes = np.arange(length) + for i in range(num_slices): + training = np.delete(indexes, slice(i, None, num_slices)) + validation = indexes[i::num_slices] + pairs.append((training, validation)) + return pairs + + +def _xv_partition_montecarlo(length): + """ + Return training and validation set for Monte Carlo cross-validation on `length` items. + + This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices. + + The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3. + + Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5] + """ + shuffled = np.random.permutation(np.arange(length)) + border = int(length * float(2) / 3) + training = shuffled[:border] + validation = shuffled[border:] + return (training, validation) + + +class CrossValidator: + """ + Cross-Validation helper for model generation. + + Given a set of measurements and a model class, it will partition the + data into training and validation sets, train the model on the training + set, and assess its quality on the validation set. This is repeated + several times depending on cross-validation algorithm and configuration. + Reports the mean model error over all cross-validation runs. + """ + + def __init__(self, model_class, by_name, parameters, arg_count): + """ + Create a new CrossValidator object. + + Does not perform cross-validation yet. + + arguments: + model_class -- model class/type used for model synthesis, + e.g. PTAModel or AnalyticModel. model_class must have a + constructor accepting (by_name, parameters, arg_count) + and provide an `assess` method. + by_name -- measurements aggregated by state/transition/function/... name. + Layout: by_name[name][attribute] = list of data. Additionally, + by_name[name]['attributes'] must be set to the list of attributes, + e.g. ['power'] or ['duration', 'energy']. + """ + self.model_class = model_class + self.by_name = by_name + self.names = sorted(by_name.keys()) + self.parameters = sorted(parameters) + self.arg_count = arg_count + + def kfold(self, model_getter, k=10): + """ + Perform k-fold cross-validation and return average model quality. + + The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner. + After creating a model for the training set, the + model type returned by model_getter is evaluated on the validation set. + This is repeated k times; the average of all measures is returned to the user. + + arguments: + model_getter -- function with signature (model_object) -> model, + e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware + model with automatic parameter detection. + k -- step size for k-fold cross-validation. The validation set contains 100/k % of data. + + return value: + dict of model quality measures. + { + 'by_name' : { + for each name: { + for each attribute: { + 'mae' : mean of all mean absolute errors + 'mae_list' : list of the individual MAE values encountered during cross-validation + 'smape' : mean of all symmetric mean absolute percentage errors + 'smape_list' : list of the individual SMAPE values encountered during cross-validation + } + } + } + } + """ + + # training / validation subsets for each state and transition + subsets_by_name = dict() + training_and_validation_sets = list() + + for name in self.names: + sample_count = len(self.by_name[name]["param"]) + subsets_by_name[name] = list() + subsets_by_name[name] = _xv_partitions_kfold(sample_count, k) + + for i in range(k): + training_and_validation_sets.append(dict()) + for name in self.names: + training_and_validation_sets[i][name] = subsets_by_name[name][i] + + return self._generic_xv(model_getter, training_and_validation_sets) + + def montecarlo(self, model_getter, count=200): + """ + Perform Monte Carlo cross-validation and return average model quality. + + The by_name data is randomly divided into 2/3 training and 1/3 + validation. After creating a model for the training set, the + model type returned by model_getter is evaluated on the validation set. + This is repeated count times (defaulting to 200); the average of all + measures is returned to the user. + + arguments: + model_getter -- function with signature (model_object) -> model, + e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware + model with automatic parameter detection. + count -- number of validation runs to perform, defaults to 200 + + return value: + dict of model quality measures. + { + 'by_name' : { + for each name: { + for each attribute: { + 'mae' : mean of all mean absolute errors + 'mae_list' : list of the individual MAE values encountered during cross-validation + 'smape' : mean of all symmetric mean absolute percentage errors + 'smape_list' : list of the individual SMAPE values encountered during cross-validation + } + } + } + } + """ + + # training / validation subsets for each state and transition + subsets_by_name = dict() + training_and_validation_sets = list() + + for name in self.names: + sample_count = len(self.by_name[name]["param"]) + subsets_by_name[name] = list() + for _ in range(count): + subsets_by_name[name].append(_xv_partition_montecarlo(sample_count)) + + for i in range(count): + training_and_validation_sets.append(dict()) + for name in self.names: + training_and_validation_sets[i][name] = subsets_by_name[name][i] + + return self._generic_xv(model_getter, training_and_validation_sets) + + def _generic_xv(self, model_getter, training_and_validation_sets): + ret = {"by_name": dict()} + + for name in self.names: + ret["by_name"][name] = dict() + for attribute in self.by_name[name]["attributes"]: + ret["by_name"][name][attribute] = { + "mae_list": list(), + "smape_list": list(), + } + + for training_and_validation_by_name in training_and_validation_sets: + res = self._single_xv(model_getter, training_and_validation_by_name) + for name in self.names: + for attribute in self.by_name[name]["attributes"]: + ret["by_name"][name][attribute]["mae_list"].append( + res["by_name"][name][attribute]["mae"] + ) + ret["by_name"][name][attribute]["smape_list"].append( + res["by_name"][name][attribute]["smape"] + ) + + for name in self.names: + for attribute in self.by_name[name]["attributes"]: + ret["by_name"][name][attribute]["mae"] = np.mean( + ret["by_name"][name][attribute]["mae_list"] + ) + ret["by_name"][name][attribute]["smape"] = np.mean( + ret["by_name"][name][attribute]["smape_list"] + ) + + return ret + + def _single_xv(self, model_getter, tv_set_dict): + training = dict() + validation = dict() + for name in self.names: + training[name] = {"attributes": self.by_name[name]["attributes"]} + validation[name] = {"attributes": self.by_name[name]["attributes"]} + + if "isa" in self.by_name[name]: + training[name]["isa"] = self.by_name[name]["isa"] + validation[name]["isa"] = self.by_name[name]["isa"] + + training_subset, validation_subset = tv_set_dict[name] + + for attribute in self.by_name[name]["attributes"]: + self.by_name[name][attribute] = np.array(self.by_name[name][attribute]) + training[name][attribute] = self.by_name[name][attribute][ + training_subset + ] + validation[name][attribute] = self.by_name[name][attribute][ + validation_subset + ] + + # We can't use slice syntax for 'param', which may contain strings and other odd values + training[name]["param"] = list() + validation[name]["param"] = list() + for idx in training_subset: + training[name]["param"].append(self.by_name[name]["param"][idx]) + for idx in validation_subset: + validation[name]["param"].append(self.by_name[name]["param"][idx]) + + training_data = self.model_class(training, self.parameters, self.arg_count) + training_model = model_getter(training_data) + validation_data = self.model_class(validation, self.parameters, self.arg_count) + + return validation_data.assess(training_model) |