summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/dfatool.py282
-rw-r--r--lib/validation.py241
2 files changed, 259 insertions, 264 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 0596ad8..392f5a6 100644
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -16,13 +16,9 @@ from multiprocessing import Pool
from .functions import analytic
from .functions import AnalyticFunction
from .parameters import ParamStats
-from .utils import (
- is_numeric,
- soft_cast_int,
- param_slice_eq,
- remove_index_from_tuple,
-)
+from .utils import is_numeric, soft_cast_int, param_slice_eq, remove_index_from_tuple
from .utils import by_name_to_by_param, match_parameter_values, running_mean
+from .validation import CrossValidator
logger = logging.getLogger(__name__)
@@ -196,241 +192,6 @@ class KeysightCSV:
return timestamps, currents
-def _xv_partitions_kfold(length, k=10):
- """
- Return k pairs of training and validation sets for k-fold cross-validation on `length` items.
-
- In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training.
- As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set.
-
- Note that this function operates on indices, not data.
- """
- pairs = []
- num_slices = k
- indexes = np.arange(length)
- for i in range(num_slices):
- training = np.delete(indexes, slice(i, None, num_slices))
- validation = indexes[i::num_slices]
- pairs.append((training, validation))
- return pairs
-
-
-def _xv_partition_montecarlo(length):
- """
- Return training and validation set for Monte Carlo cross-validation on `length` items.
-
- This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices.
-
- The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3.
-
- Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5]
- """
- shuffled = np.random.permutation(np.arange(length))
- border = int(length * float(2) / 3)
- training = shuffled[:border]
- validation = shuffled[border:]
- return (training, validation)
-
-
-class CrossValidator:
- """
- Cross-Validation helper for model generation.
-
- Given a set of measurements and a model class, it will partition the
- data into training and validation sets, train the model on the training
- set, and assess its quality on the validation set. This is repeated
- several times depending on cross-validation algorithm and configuration.
- Reports the mean model error over all cross-validation runs.
- """
-
- def __init__(self, model_class, by_name, parameters, arg_count):
- """
- Create a new CrossValidator object.
-
- Does not perform cross-validation yet.
-
- arguments:
- model_class -- model class/type used for model synthesis,
- e.g. PTAModel or AnalyticModel. model_class must have a
- constructor accepting (by_name, parameters, arg_count)
- and provide an `assess` method.
- by_name -- measurements aggregated by state/transition/function/... name.
- Layout: by_name[name][attribute] = list of data. Additionally,
- by_name[name]['attributes'] must be set to the list of attributes,
- e.g. ['power'] or ['duration', 'energy'].
- """
- self.model_class = model_class
- self.by_name = by_name
- self.names = sorted(by_name.keys())
- self.parameters = sorted(parameters)
- self.arg_count = arg_count
-
- def kfold(self, model_getter, k=10):
- """
- Perform k-fold cross-validation and return average model quality.
-
- The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner.
- After creating a model for the training set, the
- model type returned by model_getter is evaluated on the validation set.
- This is repeated k times; the average of all measures is returned to the user.
-
- arguments:
- model_getter -- function with signature (model_object) -> model,
- e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
- model with automatic parameter detection.
- k -- step size for k-fold cross-validation. The validation set contains 100/k % of data.
-
- return value:
- dict of model quality measures.
- {
- 'by_name' : {
- for each name: {
- for each attribute: {
- 'mae' : mean of all mean absolute errors
- 'mae_list' : list of the individual MAE values encountered during cross-validation
- 'smape' : mean of all symmetric mean absolute percentage errors
- 'smape_list' : list of the individual SMAPE values encountered during cross-validation
- }
- }
- }
- }
- """
-
- # training / validation subsets for each state and transition
- subsets_by_name = dict()
- training_and_validation_sets = list()
-
- for name in self.names:
- sample_count = len(self.by_name[name]["param"])
- subsets_by_name[name] = list()
- subsets_by_name[name] = _xv_partitions_kfold(sample_count, k)
-
- for i in range(k):
- training_and_validation_sets.append(dict())
- for name in self.names:
- training_and_validation_sets[i][name] = subsets_by_name[name][i]
-
- return self._generic_xv(model_getter, training_and_validation_sets)
-
- def montecarlo(self, model_getter, count=200):
- """
- Perform Monte Carlo cross-validation and return average model quality.
-
- The by_name data is randomly divided into 2/3 training and 1/3
- validation. After creating a model for the training set, the
- model type returned by model_getter is evaluated on the validation set.
- This is repeated count times (defaulting to 200); the average of all
- measures is returned to the user.
-
- arguments:
- model_getter -- function with signature (model_object) -> model,
- e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
- model with automatic parameter detection.
- count -- number of validation runs to perform, defaults to 200
-
- return value:
- dict of model quality measures.
- {
- 'by_name' : {
- for each name: {
- for each attribute: {
- 'mae' : mean of all mean absolute errors
- 'mae_list' : list of the individual MAE values encountered during cross-validation
- 'smape' : mean of all symmetric mean absolute percentage errors
- 'smape_list' : list of the individual SMAPE values encountered during cross-validation
- }
- }
- }
- }
- """
-
- # training / validation subsets for each state and transition
- subsets_by_name = dict()
- training_and_validation_sets = list()
-
- for name in self.names:
- sample_count = len(self.by_name[name]["param"])
- subsets_by_name[name] = list()
- for _ in range(count):
- subsets_by_name[name].append(_xv_partition_montecarlo(sample_count))
-
- for i in range(count):
- training_and_validation_sets.append(dict())
- for name in self.names:
- training_and_validation_sets[i][name] = subsets_by_name[name][i]
-
- return self._generic_xv(model_getter, training_and_validation_sets)
-
- def _generic_xv(self, model_getter, training_and_validation_sets):
- ret = {"by_name": dict()}
-
- for name in self.names:
- ret["by_name"][name] = dict()
- for attribute in self.by_name[name]["attributes"]:
- ret["by_name"][name][attribute] = {
- "mae_list": list(),
- "smape_list": list(),
- }
-
- for training_and_validation_by_name in training_and_validation_sets:
- res = self._single_xv(model_getter, training_and_validation_by_name)
- for name in self.names:
- for attribute in self.by_name[name]["attributes"]:
- ret["by_name"][name][attribute]["mae_list"].append(
- res["by_name"][name][attribute]["mae"]
- )
- ret["by_name"][name][attribute]["smape_list"].append(
- res["by_name"][name][attribute]["smape"]
- )
-
- for name in self.names:
- for attribute in self.by_name[name]["attributes"]:
- ret["by_name"][name][attribute]["mae"] = np.mean(
- ret["by_name"][name][attribute]["mae_list"]
- )
- ret["by_name"][name][attribute]["smape"] = np.mean(
- ret["by_name"][name][attribute]["smape_list"]
- )
-
- return ret
-
- def _single_xv(self, model_getter, tv_set_dict):
- training = dict()
- validation = dict()
- for name in self.names:
- training[name] = {"attributes": self.by_name[name]["attributes"]}
- validation[name] = {"attributes": self.by_name[name]["attributes"]}
-
- if "isa" in self.by_name[name]:
- training[name]["isa"] = self.by_name[name]["isa"]
- validation[name]["isa"] = self.by_name[name]["isa"]
-
- training_subset, validation_subset = tv_set_dict[name]
-
- for attribute in self.by_name[name]["attributes"]:
- self.by_name[name][attribute] = np.array(self.by_name[name][attribute])
- training[name][attribute] = self.by_name[name][attribute][
- training_subset
- ]
- validation[name][attribute] = self.by_name[name][attribute][
- validation_subset
- ]
-
- # We can't use slice syntax for 'param', which may contain strings and other odd values
- training[name]["param"] = list()
- validation[name]["param"] = list()
- for idx in training_subset:
- training[name]["param"].append(self.by_name[name]["param"][idx])
- for idx in validation_subset:
- validation[name]["param"].append(self.by_name[name]["param"][idx])
-
- training_data = self.model_class(training, self.parameters, self.arg_count)
- training_model = model_getter(training_data)
- validation_data = self.model_class(validation, self.parameters, self.arg_count)
-
- return validation_data.assess(training_model)
-
-
def _preprocess_mimosa(measurement):
setup = measurement["setup"]
mim = MIMOSA(
@@ -538,9 +299,7 @@ class TimingData:
transitions = list(
filter(lambda x: x["isa"] == "transition", trace["trace"])
)
- self.traces.append(
- {"id": trace["id"], "trace": transitions,}
- )
+ self.traces.append({"id": trace["id"], "trace": transitions})
for i, trace in enumerate(self.traces):
trace["orig_id"] = trace["id"]
trace["id"] = i
@@ -1376,7 +1135,7 @@ class RawData:
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e="; ".join(measurement["datasource_errors"]),
- ),
+ )
)
continue
@@ -1398,7 +1157,7 @@ class RawData:
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e=measurement["error"],
- ),
+ )
)
elif version == 2:
if self._measurement_is_valid_2(measurement):
@@ -1410,12 +1169,12 @@ class RawData:
ar=self.filenames[measurement["fileno"]],
m=measurement["info"].name,
e=measurement["error"],
- ),
+ )
)
logger.info(
"{num_valid:d}/{num_total:d} measurements are valid".format(
num_valid=num_valid, num_total=len(measurements)
- ),
+ )
)
if version == 0:
self.traces = self._concatenate_traces(self.traces_by_fileno)
@@ -1834,7 +1593,7 @@ class AnalyticModel:
except RuntimeWarning:
logger.warning("Got no data for {} {}".format(name, key))
except FloatingPointError as fpe:
- logger.warning("Got no data for {} {}: {}".format(name, key, fpe),)
+ logger.warning("Got no data for {} {}: {}".format(name, key, fpe))
return model
def param_index(self, param_name):
@@ -2000,9 +1759,7 @@ class AnalyticModel:
measures = regression_measures(predicted_data, elem[attribute])
detailed_results[name][attribute] = measures
- return {
- "by_name": detailed_results,
- }
+ return {"by_name": detailed_results}
def to_json(self):
# TODO
@@ -2230,7 +1987,7 @@ class PTAModel:
except RuntimeWarning:
logger.warning("Got no data for {} {}".format(name, key))
except FloatingPointError as fpe:
- logger.warning("Got no data for {} {}: {}".format(name, key, fpe),)
+ logger.warning("Got no data for {} {}: {}".format(name, key, fpe))
return model
def get_static(self, use_mean=False):
@@ -2729,7 +2486,7 @@ class EnergyTraceLog:
logger.debug(
"got {} samples with {} seconds of log data ({} Hz)".format(
data_count, m_duration_us * 1e-6, self.sample_rate
- ),
+ )
)
return (
@@ -2839,14 +2596,14 @@ class EnergyTraceLog:
logger.debug(
'{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format(
offline_index, bc, start, stop, end
- ),
+ )
)
if bc != name:
- logger.error('mismatch: expected "{}", got "{}"'.format(name, bc),)
+ logger.error('mismatch: expected "{}", got "{}"'.format(name, bc))
logger.debug(
"{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format(
offline_index, end, end + duration
- ),
+ )
)
transition_start_index = self.ts_to_index(end)
@@ -2861,7 +2618,7 @@ class EnergyTraceLog:
offline_index,
transition_start_index / self.sample_rate,
transition_done_index / self.sample_rate,
- ),
+ )
)
transition_power_W = self.interval_power[
@@ -2959,7 +2716,7 @@ class EnergyTraceLog:
logger.debug(
"looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format(
start_ts, sync_threshold_power * 1e3
- ),
+ )
)
sync_area_start = None
@@ -2993,7 +2750,7 @@ class EnergyTraceLog:
logger.debug(
"barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format(
sync_start_ts, sync_end_ts, len(barcode_data)
- ),
+ )
)
bc, start, stop, padding_bits = self.find_barcode_in_power_data(barcode_data)
@@ -3440,10 +3197,7 @@ class MIMOSA:
}
)
prevsubidx = subidx
- substates = {
- "threshold": thr,
- "states": statelist,
- }
+ substates = {"threshold": thr, "states": statelist}
isa = "state"
if not is_state:
diff --git a/lib/validation.py b/lib/validation.py
new file mode 100644
index 0000000..98d49c1
--- /dev/null
+++ b/lib/validation.py
@@ -0,0 +1,241 @@
+#!/usr/bin/env python3
+
+import logging
+import numpy as np
+
+logger = logging.getLogger(__name__)
+
+
+def _xv_partitions_kfold(length, k=10):
+ """
+ Return k pairs of training and validation sets for k-fold cross-validation on `length` items.
+
+ In k-fold cross-validation, every k-th item is used for validation and the remainder is used for training.
+ As there are k ways to do this (items 0, k, 2k, ... vs. items 1, k+1, 2k+1, ... etc), this function returns k pairs of training and validation set.
+
+ Note that this function operates on indices, not data.
+ """
+ pairs = []
+ num_slices = k
+ indexes = np.arange(length)
+ for i in range(num_slices):
+ training = np.delete(indexes, slice(i, None, num_slices))
+ validation = indexes[i::num_slices]
+ pairs.append((training, validation))
+ return pairs
+
+
+def _xv_partition_montecarlo(length):
+ """
+ Return training and validation set for Monte Carlo cross-validation on `length` items.
+
+ This function operates on indices, not data. It randomly partitions range(length) into a list of training indices and a list of validation indices.
+
+ The training set contains 2/3 of all indices; the validation set consits of the remaining 1/3.
+
+ Example: 9 items -> training = [7, 3, 8, 0, 4, 2], validation = [ 1, 6, 5]
+ """
+ shuffled = np.random.permutation(np.arange(length))
+ border = int(length * float(2) / 3)
+ training = shuffled[:border]
+ validation = shuffled[border:]
+ return (training, validation)
+
+
+class CrossValidator:
+ """
+ Cross-Validation helper for model generation.
+
+ Given a set of measurements and a model class, it will partition the
+ data into training and validation sets, train the model on the training
+ set, and assess its quality on the validation set. This is repeated
+ several times depending on cross-validation algorithm and configuration.
+ Reports the mean model error over all cross-validation runs.
+ """
+
+ def __init__(self, model_class, by_name, parameters, arg_count):
+ """
+ Create a new CrossValidator object.
+
+ Does not perform cross-validation yet.
+
+ arguments:
+ model_class -- model class/type used for model synthesis,
+ e.g. PTAModel or AnalyticModel. model_class must have a
+ constructor accepting (by_name, parameters, arg_count)
+ and provide an `assess` method.
+ by_name -- measurements aggregated by state/transition/function/... name.
+ Layout: by_name[name][attribute] = list of data. Additionally,
+ by_name[name]['attributes'] must be set to the list of attributes,
+ e.g. ['power'] or ['duration', 'energy'].
+ """
+ self.model_class = model_class
+ self.by_name = by_name
+ self.names = sorted(by_name.keys())
+ self.parameters = sorted(parameters)
+ self.arg_count = arg_count
+
+ def kfold(self, model_getter, k=10):
+ """
+ Perform k-fold cross-validation and return average model quality.
+
+ The by_name data is divided into 1-1/k training and 1/k validation in a deterministic manner.
+ After creating a model for the training set, the
+ model type returned by model_getter is evaluated on the validation set.
+ This is repeated k times; the average of all measures is returned to the user.
+
+ arguments:
+ model_getter -- function with signature (model_object) -> model,
+ e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
+ model with automatic parameter detection.
+ k -- step size for k-fold cross-validation. The validation set contains 100/k % of data.
+
+ return value:
+ dict of model quality measures.
+ {
+ 'by_name' : {
+ for each name: {
+ for each attribute: {
+ 'mae' : mean of all mean absolute errors
+ 'mae_list' : list of the individual MAE values encountered during cross-validation
+ 'smape' : mean of all symmetric mean absolute percentage errors
+ 'smape_list' : list of the individual SMAPE values encountered during cross-validation
+ }
+ }
+ }
+ }
+ """
+
+ # training / validation subsets for each state and transition
+ subsets_by_name = dict()
+ training_and_validation_sets = list()
+
+ for name in self.names:
+ sample_count = len(self.by_name[name]["param"])
+ subsets_by_name[name] = list()
+ subsets_by_name[name] = _xv_partitions_kfold(sample_count, k)
+
+ for i in range(k):
+ training_and_validation_sets.append(dict())
+ for name in self.names:
+ training_and_validation_sets[i][name] = subsets_by_name[name][i]
+
+ return self._generic_xv(model_getter, training_and_validation_sets)
+
+ def montecarlo(self, model_getter, count=200):
+ """
+ Perform Monte Carlo cross-validation and return average model quality.
+
+ The by_name data is randomly divided into 2/3 training and 1/3
+ validation. After creating a model for the training set, the
+ model type returned by model_getter is evaluated on the validation set.
+ This is repeated count times (defaulting to 200); the average of all
+ measures is returned to the user.
+
+ arguments:
+ model_getter -- function with signature (model_object) -> model,
+ e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
+ model with automatic parameter detection.
+ count -- number of validation runs to perform, defaults to 200
+
+ return value:
+ dict of model quality measures.
+ {
+ 'by_name' : {
+ for each name: {
+ for each attribute: {
+ 'mae' : mean of all mean absolute errors
+ 'mae_list' : list of the individual MAE values encountered during cross-validation
+ 'smape' : mean of all symmetric mean absolute percentage errors
+ 'smape_list' : list of the individual SMAPE values encountered during cross-validation
+ }
+ }
+ }
+ }
+ """
+
+ # training / validation subsets for each state and transition
+ subsets_by_name = dict()
+ training_and_validation_sets = list()
+
+ for name in self.names:
+ sample_count = len(self.by_name[name]["param"])
+ subsets_by_name[name] = list()
+ for _ in range(count):
+ subsets_by_name[name].append(_xv_partition_montecarlo(sample_count))
+
+ for i in range(count):
+ training_and_validation_sets.append(dict())
+ for name in self.names:
+ training_and_validation_sets[i][name] = subsets_by_name[name][i]
+
+ return self._generic_xv(model_getter, training_and_validation_sets)
+
+ def _generic_xv(self, model_getter, training_and_validation_sets):
+ ret = {"by_name": dict()}
+
+ for name in self.names:
+ ret["by_name"][name] = dict()
+ for attribute in self.by_name[name]["attributes"]:
+ ret["by_name"][name][attribute] = {
+ "mae_list": list(),
+ "smape_list": list(),
+ }
+
+ for training_and_validation_by_name in training_and_validation_sets:
+ res = self._single_xv(model_getter, training_and_validation_by_name)
+ for name in self.names:
+ for attribute in self.by_name[name]["attributes"]:
+ ret["by_name"][name][attribute]["mae_list"].append(
+ res["by_name"][name][attribute]["mae"]
+ )
+ ret["by_name"][name][attribute]["smape_list"].append(
+ res["by_name"][name][attribute]["smape"]
+ )
+
+ for name in self.names:
+ for attribute in self.by_name[name]["attributes"]:
+ ret["by_name"][name][attribute]["mae"] = np.mean(
+ ret["by_name"][name][attribute]["mae_list"]
+ )
+ ret["by_name"][name][attribute]["smape"] = np.mean(
+ ret["by_name"][name][attribute]["smape_list"]
+ )
+
+ return ret
+
+ def _single_xv(self, model_getter, tv_set_dict):
+ training = dict()
+ validation = dict()
+ for name in self.names:
+ training[name] = {"attributes": self.by_name[name]["attributes"]}
+ validation[name] = {"attributes": self.by_name[name]["attributes"]}
+
+ if "isa" in self.by_name[name]:
+ training[name]["isa"] = self.by_name[name]["isa"]
+ validation[name]["isa"] = self.by_name[name]["isa"]
+
+ training_subset, validation_subset = tv_set_dict[name]
+
+ for attribute in self.by_name[name]["attributes"]:
+ self.by_name[name][attribute] = np.array(self.by_name[name][attribute])
+ training[name][attribute] = self.by_name[name][attribute][
+ training_subset
+ ]
+ validation[name][attribute] = self.by_name[name][attribute][
+ validation_subset
+ ]
+
+ # We can't use slice syntax for 'param', which may contain strings and other odd values
+ training[name]["param"] = list()
+ validation[name]["param"] = list()
+ for idx in training_subset:
+ training[name]["param"].append(self.by_name[name]["param"][idx])
+ for idx in validation_subset:
+ validation[name]["param"].append(self.by_name[name]["param"][idx])
+
+ training_data = self.model_class(training, self.parameters, self.arg_count)
+ training_model = model_getter(training_data)
+ validation_data = self.model_class(validation, self.parameters, self.arg_count)
+
+ return validation_data.assess(training_model)