diff options
Diffstat (limited to 'lib')
-rwxr-xr-x | lib/automata.py | 38 |
1 files changed, 36 insertions, 2 deletions
diff --git a/lib/automata.py b/lib/automata.py index ff32bf7..4e76581 100755 --- a/lib/automata.py +++ b/lib/automata.py @@ -104,6 +104,17 @@ class State: new_suffix.extend(suffix) yield new_suffix +def _json_function_to_analytic_function(base, attribute, parameters): + if attribute in base and 'function' in base[attribute]: + base = base[attribute]['function'] + return AnalyticFunction(base['raw'], parameters, 0, regression_args = base['regression_args']) + return None + +def _json_get_static(base, attribute): + if attribute in base: + return base[attribute]['static'] + return 0 + class PTA: def __init__(self, state_names = [], parameters = [], initial_param_values = None): self.states = dict([[state_name, State(state_name)] for state_name in state_names]) @@ -117,8 +128,31 @@ class PTA: if not 'UNINITIALIZED' in state_names: self.states['UNINITIALIZED'] = State('UNINITIALIZED') + @classmethod + def from_json(cls, json_input): + kwargs = {} + for key in ('state_names', 'parameters', 'initial_param_values'): + if key in json_input: + kwargs[key] = json_input[key] + pta = cls(**kwargs) + for name, state in json_input['states'].items(): + power_function = _json_function_to_analytic_function(state, 'power', pta.parameters) + pta.add_state(name, power = _json_get_static(state, 'power'), power_function = power_function) + for transition in json_input['transitions']: + duration_function = _json_function_to_analytic_function(transition, 'duration', pta.parameters) + energy_function = _json_function_to_analytic_function(transition, 'energy', pta.parameters) + timeout_function = _json_function_to_analytic_function(transition, 'timeout', pta.parameters) + pta.add_transition(transition['origin'], transition['destination'], + transition['name'], + duration = _json_get_static(transition, 'duration'), + energy = _json_get_static(transition, 'energy'), + timeout = _json_get_static(transition, 'timeout') + ) + + return pta + def add_state(self, state_name, **kwargs): - if 'power_function' in kwargs: + if 'power_function' in kwargs and type(kwargs['power_function']) != AnalyticFunction: kwargs['power_function'] = AnalyticFunction(kwargs['power_function'], self.parameters, 0) self.states[state_name] = State(state_name, **kwargs) @@ -127,7 +161,7 @@ class PTA: orig_state = self.states[orig_state] dest_state = self.states[dest_state] for key in ('duration_function', 'energy_function', 'timeout_function'): - if key in kwargs: + if key in kwargs and type(kwargs[key]) != AnalyticFunction: kwargs[key] = AnalyticFunction(kwargs[key], self.parameters, 0) new_transition = Transition(orig_state, dest_state, function_name, **kwargs) |