summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/functions.py4
-rw-r--r--lib/lineartree/__init__.py6
-rw-r--r--lib/lineartree/_classes.py1246
-rw-r--r--lib/lineartree/_criterion.py89
-rw-r--r--lib/lineartree/lineartree.py1589
-rw-r--r--lib/model.py6
-rw-r--r--lib/parameters.py21
7 files changed, 2961 insertions, 0 deletions
diff --git a/lib/functions.py b/lib/functions.py
index 43ee58a..3630215 100644
--- a/lib/functions.py
+++ b/lib/functions.py
@@ -469,6 +469,10 @@ class CARTFunction(SKLearnRegressionFunction):
return self.regressor.get_depth()
+class LMTFunction(SKLearnRegressionFunction):
+ pass
+
+
class XGBoostFunction(SKLearnRegressionFunction):
def get_number_of_nodes(self):
import json
diff --git a/lib/lineartree/__init__.py b/lib/lineartree/__init__.py
new file mode 100644
index 0000000..3d141de
--- /dev/null
+++ b/lib/lineartree/__init__.py
@@ -0,0 +1,6 @@
+#!/usr/bin/env python3
+# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>
+
+from ._classes import *
+from ._criterion import *
+from .lineartree import *
diff --git a/lib/lineartree/_classes.py b/lib/lineartree/_classes.py
new file mode 100644
index 0000000..83385c3
--- /dev/null
+++ b/lib/lineartree/_classes.py
@@ -0,0 +1,1246 @@
+#!/usr/bin/env python3
+# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>
+
+import numbers
+import numpy as np
+import scipy.sparse as sp
+
+from copy import deepcopy
+from joblib import Parallel, effective_n_jobs # , delayed
+
+from sklearn.dummy import DummyClassifier
+from sklearn.tree import DecisionTreeRegressor
+from sklearn.ensemble import RandomForestRegressor
+
+from sklearn.base import is_regressor
+from sklearn.base import BaseEstimator, TransformerMixin
+
+from sklearn.utils import check_array
+from sklearn.utils.validation import has_fit_parameter, check_is_fitted
+
+from ._criterion import SCORING
+from ._criterion import mse, rmse, mae, poisson
+from ._criterion import hamming, crossentropy
+
+import sklearn
+
+_sklearn_v1 = eval(sklearn.__version__.split(".")[0]) > 0
+
+
+CRITERIA = {
+ "mse": mse,
+ "rmse": rmse,
+ "mae": mae,
+ "poisson": poisson,
+ "hamming": hamming,
+ "crossentropy": crossentropy,
+}
+
+
+#########################################################################
+### remove when https://github.com/joblib/joblib/issues/1071 is fixed ###
+#########################################################################
+from sklearn import get_config, config_context
+from functools import update_wrapper
+import functools
+
+# from sklearn.utils.fixes
+def delayed(function):
+ """Decorator used to capture the arguments of a function."""
+
+ @functools.wraps(function)
+ def delayed_function(*args, **kwargs):
+ return _FuncWrapper(function), args, kwargs
+
+ return delayed_function
+
+
+# from sklearn.utils.fixes
+class _FuncWrapper:
+ """ "Load the global configuration before calling the function."""
+
+ def __init__(self, function):
+ self.function = function
+ self.config = get_config()
+ update_wrapper(self, self.function)
+
+ def __call__(self, *args, **kwargs):
+ with config_context(**self.config):
+ return self.function(*args, **kwargs)
+
+
+#########################################################################
+#########################################################################
+#########################################################################
+
+
+def _partition_columns(columns, n_jobs):
+ """Private function to partition columns splitting between jobs."""
+ # Compute the number of jobs
+ n_columns = len(columns)
+ n_jobs = min(effective_n_jobs(n_jobs), n_columns)
+
+ # Partition columns between jobs
+ n_columns_per_job = np.full(n_jobs, n_columns // n_jobs, dtype=int)
+ n_columns_per_job[: n_columns % n_jobs] += 1
+ columns_per_job = np.cumsum(n_columns_per_job)
+ columns_per_job = np.split(columns, columns_per_job)
+ columns_per_job = columns_per_job[:-1]
+
+ return n_jobs, columns_per_job
+
+
+def _parallel_binning_fit(
+ split_feat, _self, X, y, weights, support_sample_weight, bins, loss
+):
+ """Private function to find the best column splittings within a job."""
+ n_sample, n_feat = X.shape
+ feval = CRITERIA[_self.criterion]
+
+ split_t = None
+ split_col = None
+ left_node = (None, None, None, None)
+ right_node = (None, None, None, None)
+ largs_left = {"classes": None}
+ largs_right = {"classes": None}
+
+ if n_sample < _self._min_samples_split:
+ return loss, split_t, split_col, left_node, right_node
+
+ for col, _bin in zip(split_feat, bins):
+
+ for q in _bin:
+
+ # create 1D bool mask for right/left children
+ mask = X[:, col] > q
+
+ n_left, n_right = (~mask).sum(), mask.sum()
+
+ if n_left < _self._min_samples_leaf or n_right < _self._min_samples_leaf:
+ continue
+
+ # create 2D bool mask for right/left children
+ left_mesh = np.ix_(~mask, _self._linear_features)
+ right_mesh = np.ix_(mask, _self._linear_features)
+
+ model_left = deepcopy(_self.base_estimator)
+ model_right = deepcopy(_self.base_estimator)
+
+ if hasattr(_self, "classes_"):
+ largs_left["classes"] = np.unique(y[~mask])
+ largs_right["classes"] = np.unique(y[mask])
+ if len(largs_left["classes"]) == 1:
+ model_left = DummyClassifier(strategy="most_frequent")
+ if len(largs_right["classes"]) == 1:
+ model_right = DummyClassifier(strategy="most_frequent")
+
+ if weights is None:
+
+ model_left.fit(X[left_mesh], y[~mask])
+ loss_left = feval(model_left, X[left_mesh], y[~mask], **largs_left)
+ wloss_left = loss_left * (n_left / n_sample)
+
+ model_right.fit(X[right_mesh], y[mask])
+ loss_right = feval(model_right, X[right_mesh], y[mask], **largs_right)
+ wloss_right = loss_right * (n_right / n_sample)
+
+ else:
+
+ if support_sample_weight:
+
+ model_left.fit(X[left_mesh], y[~mask], sample_weight=weights[~mask])
+
+ model_right.fit(X[right_mesh], y[mask], sample_weight=weights[mask])
+
+ else:
+
+ model_left.fit(X[left_mesh], y[~mask])
+
+ model_right.fit(X[right_mesh], y[mask])
+
+ loss_left = feval(
+ model_left,
+ X[left_mesh],
+ y[~mask],
+ weights=weights[~mask],
+ **largs_left
+ )
+ wloss_left = loss_left * (weights[~mask].sum() / weights.sum())
+
+ loss_right = feval(
+ model_right,
+ X[right_mesh],
+ y[mask],
+ weights=weights[mask],
+ **largs_right
+ )
+ wloss_right = loss_right * (weights[mask].sum() / weights.sum())
+
+ total_loss = wloss_left + wloss_right
+
+ # store if best
+ if total_loss < loss:
+ split_t = q
+ split_col = col
+ loss = total_loss
+ left_node = (
+ model_left,
+ loss_left,
+ wloss_left,
+ n_left,
+ largs_left["classes"],
+ )
+ right_node = (
+ model_right,
+ loss_right,
+ wloss_right,
+ n_right,
+ largs_right["classes"],
+ )
+
+ return loss, split_t, split_col, left_node, right_node
+
+
+def _map_node(X, feat, direction, split):
+ """Utility to map samples to nodes"""
+ if direction == "L":
+ mask = X[:, feat] <= split
+ else:
+ mask = X[:, feat] > split
+
+ return mask
+
+
+def _predict_branch(X, branch_history, mask=None):
+ """Utility to map samples to branches"""
+
+ if mask is None:
+ mask = np.repeat(True, X.shape[0])
+
+ for node in branch_history:
+ mask = np.logical_and(_map_node(X, *node), mask)
+
+ return mask
+
+
+class Node:
+ def __init__(
+ self,
+ id=None,
+ threshold=[],
+ parent=None,
+ children=None,
+ n_samples=None,
+ w_loss=None,
+ loss=None,
+ model=None,
+ classes=None,
+ ):
+ self.id = id
+ self.threshold = threshold
+ self.parent = parent
+ self.children = children
+ self.n_samples = n_samples
+ self.w_loss = w_loss
+ self.loss = loss
+ self.model = model
+ self.classes = classes
+
+
+class _LinearTree(BaseEstimator):
+ """Base class for Linear Tree meta-estimator.
+
+ Warning: This class should not be used directly. Use derived classes
+ instead.
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ criterion,
+ max_depth,
+ min_samples_split,
+ min_samples_leaf,
+ max_bins,
+ categorical_features,
+ split_features,
+ linear_features,
+ n_jobs
+ ):
+
+ self.base_estimator = base_estimator
+ self.criterion = criterion
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.max_bins = max_bins
+ self.categorical_features = categorical_features
+ self.split_features = split_features
+ self.linear_features = linear_features
+ self.n_jobs = n_jobs
+
+ def _parallel_args(self):
+ return {}
+
+ def _split(self, X, y, bins, support_sample_weight, weights=None, loss=None):
+ """Evaluate optimal splits in a given node (in a specific partition of
+ X and y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, )
+ The target values (class labels in classification, real numbers in
+ regression).
+
+ bins : array-like of shape (max_bins - 2, )
+ The bins to use to find an optimal split. Expressed as percentiles.
+
+ support_sample_weight : bool
+ Whether the estimator's fit method supports sample_weight.
+
+ weights : array-like of shape (n_samples, ), default=None
+ Sample weights. If None, then samples are equally weighted.
+ Note that if the base estimator does not support sample weighting,
+ the sample weights are still used to evaluate the splits.
+
+ loss : float, default=None
+ The loss of the parent node. A split is computed if the weighted
+ loss sum of the two children is lower than the loss of the parent.
+ A None value implies the first fit on all the data to evaluate
+ the benefits of possible future splits.
+
+ Returns
+ -------
+ self : object
+ """
+ # Parallel loops
+ n_jobs, split_feat = _partition_columns(self._split_features, self.n_jobs)
+
+ # partition columns splittings between jobs
+ all_results = Parallel(n_jobs=n_jobs, verbose=0, **self._parallel_args())(
+ delayed(_parallel_binning_fit)(
+ feat,
+ self,
+ X,
+ y,
+ weights,
+ support_sample_weight,
+ [bins[i] for i in feat],
+ loss,
+ )
+ for feat in split_feat
+ )
+
+ # extract results from parallel loops
+ _losses, split_t, split_col = [], [], []
+ left_node, right_node = [], []
+ for job_res in all_results:
+ _losses.append(job_res[0])
+ split_t.append(job_res[1])
+ split_col.append(job_res[2])
+ left_node.append(job_res[3])
+ right_node.append(job_res[4])
+
+ # select best results
+ _id_best = np.argmin(_losses)
+ if _losses[_id_best] < loss:
+ split_t = split_t[_id_best]
+ split_col = split_col[_id_best]
+ left_node = left_node[_id_best]
+ right_node = right_node[_id_best]
+ else:
+ split_t = None
+ split_col = None
+ left_node = (None, None, None, None, None)
+ right_node = (None, None, None, None, None)
+
+ return split_t, split_col, left_node, right_node
+
+ def _grow(self, X, y, weights=None):
+ """Grow and prune a Linear Tree from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, )
+ The target values (class labels in classification, real numbers in
+ regression).
+
+ weights : array-like of shape (n_samples, ), default=None
+ Sample weights. If None, then samples are equally weighted.
+ Note that if the base estimator does not support sample weighting,
+ the sample weights are still used to evaluate the splits.
+
+ Returns
+ -------
+ self : object
+ """
+ n_sample, self.n_features_in_ = X.shape
+ self.feature_importances_ = np.zeros((self.n_features_in_,))
+
+ # extract quantiles
+ bins = np.linspace(0, 1, self.max_bins)[1:-1]
+ bins = np.quantile(X, bins, axis=0, interpolation="midpoint")
+ bins = list(bins.T)
+ bins = [
+ np.unique(X[:, c]) if c in self._categorical_features else np.unique(q)
+ for c, q in enumerate(bins)
+ ]
+
+ # check if base_estimator supports fitting with sample_weights
+ support_sample_weight = has_fit_parameter(self.base_estimator, "sample_weight")
+
+ queue = [""] # queue of the nodes to evaluate for splitting
+ # store the results of each node in dicts
+ self._nodes = {}
+ self._leaves = {}
+
+ # initialize first fit
+ largs = {"classes": None}
+ model = deepcopy(self.base_estimator)
+ if weights is None or not support_sample_weight:
+ model.fit(X[:, self._linear_features], y)
+ else:
+ model.fit(X[:, self._linear_features], y, sample_weight=weights)
+
+ if hasattr(self, "classes_"):
+ largs["classes"] = self.classes_
+
+ loss = CRITERIA[self.criterion](
+ model, X[:, self._linear_features], y, weights=weights, **largs
+ )
+
+ self._nodes[""] = Node(
+ id=0, n_samples=n_sample, model=model, loss=loss, classes=largs["classes"]
+ )
+
+ # in the beginning consider all the samples
+ start = np.repeat(True, n_sample)
+ mask = start.copy()
+
+ i = 1
+ while len(queue) > 0:
+
+ if weights is None:
+ split_t, split_col, left_node, right_node = self._split(
+ X[mask], y[mask], bins, support_sample_weight, loss=loss
+ )
+ else:
+ split_t, split_col, left_node, right_node = self._split(
+ X[mask],
+ y[mask],
+ bins,
+ support_sample_weight,
+ weights[mask],
+ loss=loss,
+ )
+
+ # no utility in splitting
+ if split_col is None or len(queue[-1]) >= self.max_depth:
+ self._leaves[queue[-1]] = self._nodes[queue[-1]]
+ del self._nodes[queue[-1]]
+ queue.pop()
+
+ else:
+
+ model_left, loss_left, wloss_left, n_left, class_left = left_node
+ model_right, loss_right, wloss_right, n_right, class_right = right_node
+ self.feature_importances_[split_col] += loss - wloss_left - wloss_right
+
+ self._nodes[queue[-1] + "L"] = Node(
+ id=i,
+ parent=queue[-1],
+ model=model_left,
+ loss=loss_left,
+ w_loss=wloss_left,
+ n_samples=n_left,
+ threshold=self._nodes[queue[-1]].threshold[:]
+ + [(split_col, "L", split_t)],
+ )
+
+ self._nodes[queue[-1] + "R"] = Node(
+ id=i + 1,
+ parent=queue[-1],
+ model=model_right,
+ loss=loss_right,
+ w_loss=wloss_right,
+ n_samples=n_right,
+ threshold=self._nodes[queue[-1]].threshold[:]
+ + [(split_col, "R", split_t)],
+ )
+
+ if hasattr(self, "classes_"):
+ self._nodes[queue[-1] + "L"].classes = class_left
+ self._nodes[queue[-1] + "R"].classes = class_right
+
+ self._nodes[queue[-1]].children = (queue[-1] + "L", queue[-1] + "R")
+
+ i += 2
+ q = queue[-1]
+ queue.pop()
+ queue.extend([q + "R", q + "L"])
+
+ if len(queue) > 0:
+ loss = self._nodes[queue[-1]].loss
+ mask = _predict_branch(
+ X, self._nodes[queue[-1]].threshold, start.copy()
+ )
+
+ self.node_count = i
+
+ return self
+
+ def _fit(self, X, y, sample_weight=None):
+ """Build a Linear Tree of a linear estimator from the training
+ set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
+ multitarget regression.
+ The target values (class labels in classification, real numbers in
+ regression).
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights. If None, then samples are equally weighted.
+ Note that if the base estimator does not support sample weighting,
+ the sample weights are still used to evaluate the splits.
+
+ Returns
+ -------
+ self : object
+ """
+ n_sample, n_feat = X.shape
+
+ if isinstance(self.min_samples_split, numbers.Integral):
+ if self.min_samples_split < 6:
+ raise ValueError(
+ "min_samples_split must be an integer greater than 5 or "
+ "a float in (0.0, 1.0); got the integer {}".format(
+ self.min_samples_split
+ )
+ )
+ self._min_samples_split = self.min_samples_split
+ else:
+ if not 0.0 < self.min_samples_split < 1.0:
+ raise ValueError(
+ "min_samples_split must be an integer greater than 5 or "
+ "a float in (0.0, 1.0); got the float {}".format(
+ self.min_samples_split
+ )
+ )
+
+ self._min_samples_split = int(np.ceil(self.min_samples_split * n_sample))
+ self._min_samples_split = max(6, self._min_samples_split)
+
+ if isinstance(self.min_samples_leaf, numbers.Integral):
+ if self.min_samples_leaf < 3:
+ raise ValueError(
+ "min_samples_leaf must be an integer greater than 2 or "
+ "a float in (0.0, 1.0); got the integer {}".format(
+ self.min_samples_leaf
+ )
+ )
+ self._min_samples_leaf = self.min_samples_leaf
+ else:
+ if not 0.0 < self.min_samples_leaf < 1.0:
+ raise ValueError(
+ "min_samples_leaf must be an integer greater than 2 or "
+ "a float in (0.0, 1.0); got the float {}".format(
+ self.min_samples_leaf
+ )
+ )
+
+ self._min_samples_leaf = int(np.ceil(self.min_samples_leaf * n_sample))
+ self._min_samples_leaf = max(3, self._min_samples_leaf)
+
+ if not 1 <= self.max_depth <= 20:
+ raise ValueError("max_depth must be an integer in [1, 20].")
+
+ if not 10 <= self.max_bins <= 120:
+ raise ValueError("max_bins must be an integer in [10, 120].")
+
+ if not hasattr(self.base_estimator, "fit_intercept"):
+ raise ValueError(
+ "Only linear models are accepted as base_estimator. "
+ "Select one from linear_model class of scikit-learn."
+ )
+
+ if self.categorical_features is not None:
+ cat_features = np.unique(self.categorical_features)
+
+ if not issubclass(cat_features.dtype.type, numbers.Integral):
+ raise ValueError(
+ "No valid specification of categorical columns. "
+ "Only a scalar, list or array-like of integers is allowed."
+ )
+
+ if (cat_features < 0).any() or (cat_features >= n_feat).any():
+ raise ValueError(
+ "Categorical features must be in [0, {}].".format(n_feat - 1)
+ )
+
+ if len(cat_features) == n_feat:
+ raise ValueError(
+ "Only categorical features detected. "
+ "No features available for fitting."
+ )
+ else:
+ cat_features = []
+ self._categorical_features = cat_features
+
+ if self.split_features is not None:
+ split_features = np.unique(self.split_features)
+
+ if not issubclass(split_features.dtype.type, numbers.Integral):
+ raise ValueError(
+ "No valid specification of split_features. "
+ "Only a scalar, list or array-like of integers is allowed."
+ )
+
+ if (split_features < 0).any() or (split_features >= n_feat).any():
+ raise ValueError(
+ "Splitting features must be in [0, {}].".format(n_feat - 1)
+ )
+ else:
+ split_features = np.arange(n_feat)
+ self._split_features = split_features
+
+ if self.linear_features is not None:
+ linear_features = np.unique(self.linear_features)
+
+ if not issubclass(linear_features.dtype.type, numbers.Integral):
+ raise ValueError(
+ "No valid specification of linear_features. "
+ "Only a scalar, list or array-like of integers is allowed."
+ )
+
+ if (linear_features < 0).any() or (linear_features >= n_feat).any():
+ raise ValueError(
+ "Linear features must be in [0, {}].".format(n_feat - 1)
+ )
+
+ if np.isin(linear_features, cat_features).any():
+ raise ValueError("Linear features cannot be categorical features.")
+ else:
+ linear_features = np.setdiff1d(np.arange(n_feat), cat_features)
+ self._linear_features = linear_features
+
+ self._grow(X, y, sample_weight)
+
+ normalizer = np.sum(self.feature_importances_)
+ if normalizer > 0:
+ self.feature_importances_ /= normalizer
+
+ return self
+
+ def summary(self, feature_names=None, only_leaves=False, max_depth=None):
+ """Return a summary of nodes created from model fitting.
+
+ Parameters
+ ----------
+ feature_names : array-like of shape (n_features, ), default=None
+ Names of each of the features. If None, generic names
+ will be used (“X[0]”, “X[1]”, …).
+
+ only_leaves : bool, default=False
+ Store only information of leaf nodes.
+
+ max_depth : int, default=None
+ The maximum depth of the representation. If None, the tree
+ is fully generated.
+
+ Returns
+ -------
+ summary : nested dict
+ The keys are the integer map of each node.
+ The values are dicts containing information for that node:
+
+ - 'col' (^): column used for splitting;
+ - 'th' (^): threshold value used for splitting in the
+ selected column;
+ - 'loss': loss computed at node level. Weighted sum of
+ children' losses if it is a splitting node;
+ - 'samples': number of samples in the node. Sum of children'
+ samples if it is a split node;
+ - 'children' (^): integer mapping of possible children nodes;
+ - 'models': fitted linear models built in each split.
+ Single model if it is leaf node;
+ - 'classes' (^^): target classes detected in the split.
+ Available only for LinearTreeClassifier.
+
+ (^): Only for split nodes.
+ (^^): Only for leaf nodes.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ if max_depth is None:
+ max_depth = 20
+ if max_depth < 1:
+ raise ValueError("max_depth must be > 0, got {}".format(max_depth))
+
+ summary = {}
+
+ if len(self._nodes) > 0 and not only_leaves:
+
+ if feature_names is not None and len(feature_names) != self.n_features_in_:
+ raise ValueError(
+ "feature_names must contain {} elements, got {}".format(
+ self.n_features_in_, len(feature_names)
+ )
+ )
+
+ if feature_names is None:
+ feature_names = np.arange(self.n_features_in_)
+
+ for n, N in self._nodes.items():
+
+ if len(n) >= max_depth:
+ continue
+
+ cl, cr = N.children
+ Cl = self._nodes[cl] if cl in self._nodes else self._leaves[cl]
+ Cr = self._nodes[cr] if cr in self._nodes else self._leaves[cr]
+
+ summary[N.id] = {
+ "col": feature_names[Cl.threshold[-1][0]],
+ "th": round(Cl.threshold[-1][-1], 4),
+ "loss": round(Cl.w_loss + Cr.w_loss, 4),
+ "samples": Cl.n_samples + Cr.n_samples,
+ "children": (Cl.id, Cr.id),
+ "models": (Cl.model, Cr.model),
+ }
+
+ for l, L in self._leaves.items():
+
+ if len(l) > max_depth:
+ continue
+
+ summary[L.id] = {
+ "loss": round(L.loss, 4),
+ "samples": L.n_samples,
+ "models": L.model,
+ }
+
+ if hasattr(self, "classes_"):
+ summary[L.id]["classes"] = L.classes
+
+ return summary
+
+ def apply(self, X):
+ """Return the index of the leaf that each sample is predicted as.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ X_leaves : array-like of shape (n_samples, )
+ For each datapoint x in X, return the index of the leaf x
+ ends up in. Leaves are numbered within
+ ``[0; n_nodes)``, possibly with gaps in the
+ numbering.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
+ self._check_n_features(X, reset=False)
+
+ X_leaves = np.zeros(X.shape[0], dtype="int64")
+
+ for L in self._leaves.values():
+
+ mask = _predict_branch(X, L.threshold)
+ if (~mask).all():
+ continue
+
+ X_leaves[mask] = L.id
+
+ return X_leaves
+
+ def decision_path(self, X):
+ """Return the decision path in the tree.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ indicator : sparse matrix of shape (n_samples, n_nodes)
+ Return a node indicator CSR matrix where non zero elements
+ indicates that the samples goes through the nodes.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
+ self._check_n_features(X, reset=False)
+
+ indicator = np.zeros((X.shape[0], self.node_count), dtype="int64")
+
+ for L in self._leaves.values():
+
+ mask = _predict_branch(X, L.threshold)
+ if (~mask).all():
+ continue
+
+ n = L.id
+ p = L.parent
+ paths_id = [n]
+
+ while p is not None:
+ n = self._nodes[p].id
+ p = self._nodes[p].parent
+ paths_id.append(n)
+
+ indicator[np.ix_(mask, paths_id)] = 1
+
+ return sp.csr_matrix(indicator)
+
+ def model_to_dot(self, feature_names=None, max_depth=None):
+ """Convert a fitted Linear Tree model to dot format.
+ It results in ModuleNotFoundError if graphviz or pydot are not available.
+ When installing graphviz make sure to add it to the system path.
+
+ Parameters
+ ----------
+ feature_names : array-like of shape (n_features, ), default=None
+ Names of each of the features. If None, generic names
+ will be used (“X[0]”, “X[1]”, …).
+
+ max_depth : int, default=None
+ The maximum depth of the representation. If None, the tree
+ is fully generated.
+
+ Returns
+ -------
+ graph : pydot.Dot instance
+ Return an instance representing the Linear Tree. Splitting nodes have
+ a rectangular shape while leaf nodes have a circular one.
+ """
+ import pydot
+
+ summary = self.summary(feature_names=feature_names, max_depth=max_depth)
+ graph = pydot.Dot("linear_tree", graph_type="graph")
+
+ # create nodes
+ for n in summary:
+ if "col" in summary[n]:
+ if isinstance(summary[n]["col"], str):
+ msg = "id_node: {}\n{} <= {}\nloss: {:.4f}\nsamples: {}"
+ else:
+ msg = "id_node: {}\nX[{}] <= {}\nloss: {:.4f}\nsamples: {}"
+
+ msg = msg.format(
+ n,
+ summary[n]["col"],
+ summary[n]["th"],
+ summary[n]["loss"],
+ summary[n]["samples"],
+ )
+ graph.add_node(pydot.Node(n, label=msg, shape="rectangle"))
+
+ for c in summary[n]["children"]:
+ if c not in summary:
+ graph.add_node(pydot.Node(c, label="...", shape="rectangle"))
+
+ else:
+ msg = "id_node: {}\nloss: {:.4f}\nsamples: {}".format(
+ n, summary[n]["loss"], summary[n]["samples"]
+ )
+ graph.add_node(pydot.Node(n, label=msg))
+
+ # add edges
+ for n in summary:
+ if "children" in summary[n]:
+ for c in summary[n]["children"]:
+ graph.add_edge(pydot.Edge(n, c))
+
+ return graph
+
+ def plot_model(self, feature_names=None, max_depth=None):
+ """Convert a fitted Linear Tree model to dot format and display it.
+ It results in ModuleNotFoundError if graphviz or pydot are not available.
+ When installing graphviz make sure to add it to the system path.
+
+ Parameters
+ ----------
+ feature_names : array-like of shape (n_features, ), default=None
+ Names of each of the features. If None, generic names
+ will be used (“X[0]”, “X[1]”, …).
+
+ max_depth : int, default=None
+ The maximum depth of the representation. If None, the tree
+ is fully generated.
+
+ Returns
+ -------
+ A Jupyter notebook Image object if Jupyter is installed.
+ This enables in-line display of the model plots in notebooks.
+ Splitting nodes have a rectangular shape while leaf nodes
+ have a circular one.
+ """
+ from IPython.display import Image
+
+ graph = self.model_to_dot(feature_names=feature_names, max_depth=max_depth)
+
+ return Image(graph.create_png())
+
+
+class _LinearBoosting(TransformerMixin, BaseEstimator):
+ """Base class for Linear Boosting meta-estimator.
+
+ Warning: This class should not be used directly. Use derived classes
+ instead.
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ loss,
+ n_estimators,
+ max_depth,
+ min_samples_split,
+ min_samples_leaf,
+ min_weight_fraction_leaf,
+ max_features,
+ random_state,
+ max_leaf_nodes,
+ min_impurity_decrease,
+ ccp_alpha
+ ):
+
+ self.base_estimator = base_estimator
+ self.loss = loss
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.random_state = random_state
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.ccp_alpha = ccp_alpha
+
+ def _fit(self, X, y, sample_weight=None):
+ """Build a Linear Boosting from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
+ multitarget regression.
+ The target values (class labels in classification, real numbers in
+ regression).
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ if not hasattr(self.base_estimator, "fit_intercept"):
+ raise ValueError(
+ "Only linear models are accepted as base_estimator. "
+ "Select one from linear_model class of scikit-learn."
+ )
+
+ if self.n_estimators <= 0:
+ raise ValueError(
+ "n_estimators must be an integer greater than 0 but "
+ "got {}".format(self.n_estimators)
+ )
+
+ n_sample, self.n_features_in_ = X.shape
+
+ self._trees = []
+ self._leaves = []
+
+ for i in range(self.n_estimators):
+
+ estimator = deepcopy(self.base_estimator)
+ estimator.fit(X, y, sample_weight=sample_weight)
+
+ if self.loss == "entropy":
+ pred = estimator.predict_proba(X)
+ else:
+ pred = estimator.predict(X)
+
+ if hasattr(self, "classes_"):
+ resid = SCORING[self.loss](y, pred, self.classes_)
+ else:
+ resid = SCORING[self.loss](y, pred)
+
+ if resid.ndim > 1:
+ resid = resid.mean(1)
+
+ criterion = "squared_error" if _sklearn_v1 else "mse"
+
+ tree = DecisionTreeRegressor(
+ criterion=criterion,
+ max_depth=self.max_depth,
+ min_samples_split=self.min_samples_split,
+ min_samples_leaf=self.min_samples_leaf,
+ min_weight_fraction_leaf=self.min_weight_fraction_leaf,
+ max_features=self.max_features,
+ random_state=self.random_state,
+ max_leaf_nodes=self.max_leaf_nodes,
+ min_impurity_decrease=self.min_impurity_decrease,
+ ccp_alpha=self.ccp_alpha,
+ )
+
+ tree.fit(X, resid, sample_weight=sample_weight, check_input=False)
+ self._trees.append(tree)
+
+ pred_tree = np.abs(tree.predict(X, check_input=False))
+ worst_pred = np.max(pred_tree)
+ self._leaves.append(worst_pred)
+
+ pred_tree = (pred_tree == worst_pred).astype(np.float32)
+ pred_tree = pred_tree.reshape(-1, 1)
+ X = np.concatenate([X, pred_tree], axis=1)
+
+ self.base_estimator_ = deepcopy(self.base_estimator)
+ self.base_estimator_.fit(X, y, sample_weight=sample_weight)
+
+ if hasattr(self.base_estimator_, "coef_"):
+ self.coef_ = self.base_estimator_.coef_
+
+ if hasattr(self.base_estimator_, "intercept_"):
+ self.intercept_ = self.base_estimator_.intercept_
+
+ self.n_features_out_ = X.shape[1]
+
+ return self
+
+ def transform(self, X):
+ """Transform dataset.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Input data to be transformed. Use ``dtype=np.float32`` for maximum
+ efficiency.
+
+ Returns
+ -------
+ X_transformed : ndarray of shape (n_samples, n_out)
+ Transformed dataset.
+ `n_out` is equal to `n_features` + `n_estimators`
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+ X = check_array(X, dtype=np.float32, accept_sparse=False)
+ self._check_n_features(X, reset=False)
+
+ for tree, leaf in zip(self._trees, self._leaves):
+ pred_tree = np.abs(tree.predict(X, check_input=False))
+ pred_tree = (pred_tree == leaf).astype(np.float32)
+ pred_tree = pred_tree.reshape(-1, 1)
+ X = np.concatenate([X, pred_tree], axis=1)
+
+ return X
+
+
+class _LinearForest(BaseEstimator):
+ """Base class for Linear Forest meta-estimator.
+
+ Warning: This class should not be used directly. Use derived classes
+ instead.
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ n_estimators,
+ max_depth,
+ min_samples_split,
+ min_samples_leaf,
+ min_weight_fraction_leaf,
+ max_features,
+ max_leaf_nodes,
+ min_impurity_decrease,
+ bootstrap,
+ oob_score,
+ n_jobs,
+ random_state,
+ ccp_alpha,
+ max_samples
+ ):
+
+ self.base_estimator = base_estimator
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.bootstrap = bootstrap
+ self.oob_score = oob_score
+ self.n_jobs = n_jobs
+ self.random_state = random_state
+ self.ccp_alpha = ccp_alpha
+ self.max_samples = max_samples
+
+ def _sigmoid(self, y):
+ """Expit function (a.k.a. logistic sigmoid).
+
+ Parameters
+ ----------
+ y : array-like of shape (n_samples, )
+ The array to apply expit to element-wise.
+
+ Returns
+ -------
+ y : array-like of shape (n_samples, )
+ Expits.
+ """
+ return np.exp(y) / (1 + np.exp(y))
+
+ def _inv_sigmoid(self, y):
+ """Logit function.
+
+ Parameters
+ ----------
+ y : array-like of shape (n_samples, )
+ The array to apply logit to element-wise.
+
+ Returns
+ -------
+ y : array-like of shape (n_samples, )
+ Logits.
+ """
+ y = y.clip(1e-3, 1 - 1e-3)
+
+ return np.log(y / (1 - y))
+
+ def _fit(self, X, y, sample_weight=None):
+ """Build a Linear Boosting from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or also (n_samples, n_targets) for
+ multitarget regression.
+ The target values (class labels in classification, real numbers in
+ regression).
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ if not hasattr(self.base_estimator, "fit_intercept"):
+ raise ValueError(
+ "Only linear models are accepted as base_estimator. "
+ "Select one from linear_model class of scikit-learn."
+ )
+
+ if not is_regressor(self.base_estimator):
+ raise ValueError("Select a regressor linear model as base_estimator.")
+
+ n_sample, self.n_features_in_ = X.shape
+
+ if hasattr(self, "classes_"):
+ class_to_int = dict(map(reversed, enumerate(self.classes_)))
+ y = np.array([class_to_int[i] for i in y])
+ y = self._inv_sigmoid(y)
+
+ self.base_estimator_ = deepcopy(self.base_estimator)
+ self.base_estimator_.fit(X, y, sample_weight)
+ resid = y - self.base_estimator_.predict(X)
+
+ criterion = "squared_error" if _sklearn_v1 else "mse"
+
+ self.forest_estimator_ = RandomForestRegressor(
+ n_estimators=self.n_estimators,
+ criterion=criterion,
+ max_depth=self.max_depth,
+ min_samples_split=self.min_samples_split,
+ min_samples_leaf=self.min_samples_leaf,
+ min_weight_fraction_leaf=self.min_weight_fraction_leaf,
+ max_features=self.max_features,
+ max_leaf_nodes=self.max_leaf_nodes,
+ min_impurity_decrease=self.min_impurity_decrease,
+ bootstrap=self.bootstrap,
+ oob_score=self.oob_score,
+ n_jobs=self.n_jobs,
+ random_state=self.random_state,
+ ccp_alpha=self.ccp_alpha,
+ max_samples=self.max_samples,
+ )
+ self.forest_estimator_.fit(X, resid, sample_weight)
+
+ if hasattr(self.base_estimator_, "coef_"):
+ self.coef_ = self.base_estimator_.coef_
+
+ if hasattr(self.base_estimator_, "intercept_"):
+ self.intercept_ = self.base_estimator_.intercept_
+
+ self.feature_importances_ = self.forest_estimator_.feature_importances_
+
+ return self
+
+ def apply(self, X):
+ """Apply trees in the forest to X, return leaf indices.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The input samples.
+
+ Returns
+ -------
+ X_leaves : ndarray of shape (n_samples, n_estimators)
+ For each datapoint x in X and for each tree in the forest,
+ return the index of the leaf x ends up in.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+
+ return self.forest_estimator_.apply(X)
+
+ def decision_path(self, X):
+ """Return the decision path in the forest.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The input samples.
+
+ Returns
+ -------
+ indicator : sparse matrix of shape (n_samples, n_nodes)
+ Return a node indicator matrix where non zero elements indicates
+ that the samples goes through the nodes. The matrix is of CSR
+ format.
+
+ n_nodes_ptr : ndarray of shape (n_estimators + 1, )
+ The columns from indicator[n_nodes_ptr[i]:n_nodes_ptr[i+1]]
+ gives the indicator value for the i-th estimator.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+
+ return self.forest_estimator_.decision_path(X)
diff --git a/lib/lineartree/_criterion.py b/lib/lineartree/_criterion.py
new file mode 100644
index 0000000..4647285
--- /dev/null
+++ b/lib/lineartree/_criterion.py
@@ -0,0 +1,89 @@
+#!/usr/bin/env python3
+# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>
+
+import numpy as np
+
+
+SCORING = {
+ "linear": lambda y, yh: y - yh,
+ "square": lambda y, yh: np.square(y - yh),
+ "absolute": lambda y, yh: np.abs(y - yh),
+ "exponential": lambda y, yh: 1 - np.exp(-np.abs(y - yh)),
+ "poisson": lambda y, yh: yh.clip(1e-6) - y * np.log(yh.clip(1e-6)),
+ "hamming": lambda y, yh, classes: (y != yh).astype(int),
+ "entropy": lambda y, yh, classes: np.sum(
+ list(
+ map(
+ lambda c: -(y == c[1]).astype(int) * np.log(yh[:, c[0]]),
+ enumerate(classes),
+ )
+ ),
+ axis=0,
+ ),
+}
+
+
+def _normalize_score(scores, weights=None):
+ """Normalize scores according to weights"""
+
+ if weights is None:
+ return scores.mean()
+ else:
+ return np.mean(np.dot(scores.T, weights) / weights.sum())
+
+
+def mse(model, X, y, weights=None, **largs):
+ """Mean Squared Error"""
+
+ pred = model.predict(X)
+ scores = SCORING["square"](y, pred)
+
+ return _normalize_score(scores, weights)
+
+
+def rmse(model, X, y, weights=None, **largs):
+ """Root Mean Squared Error"""
+
+ return np.sqrt(mse(model, X, y, weights, **largs))
+
+
+def mae(model, X, y, weights=None, **largs):
+ """Mean Absolute Error"""
+
+ pred = model.predict(X)
+ scores = SCORING["absolute"](y, pred)
+
+ return _normalize_score(scores, weights)
+
+
+def poisson(model, X, y, weights=None, **largs):
+ """Poisson Loss"""
+
+ if np.any(y < 0):
+ raise ValueError(
+ "Some value(s) of y are negative which is"
+ " not allowed for Poisson regression."
+ )
+
+ pred = model.predict(X)
+ scores = SCORING["poisson"](y, pred)
+
+ return _normalize_score(scores, weights)
+
+
+def hamming(model, X, y, weights=None, **largs):
+ """Hamming Loss"""
+
+ pred = model.predict(X)
+ scores = SCORING["hamming"](y, pred, None)
+
+ return _normalize_score(scores, weights)
+
+
+def crossentropy(model, X, y, classes, weights=None, **largs):
+ """Cross Entropy Loss"""
+
+ pred = model.predict_proba(X).clip(1e-5, 1 - 1e-5)
+ scores = SCORING["entropy"](y, pred, classes)
+
+ return _normalize_score(scores, weights)
diff --git a/lib/lineartree/lineartree.py b/lib/lineartree/lineartree.py
new file mode 100644
index 0000000..0c8f2d9
--- /dev/null
+++ b/lib/lineartree/lineartree.py
@@ -0,0 +1,1589 @@
+#!/usr/bin/env python3
+# Copyright (c) 2021 Marco Cerliani, MIT License <https://github.com/cerlymarco/linear-tree>
+
+import numpy as np
+
+from sklearn.base import ClassifierMixin, RegressorMixin
+
+from sklearn.utils import check_array
+from sklearn.utils.validation import check_is_fitted, _check_sample_weight
+
+from ._classes import _predict_branch
+from ._classes import _LinearTree, _LinearBoosting, _LinearForest
+
+
+class LinearTreeRegressor(_LinearTree, RegressorMixin):
+ """A Linear Tree Regressor.
+
+ A Linear Tree Regressor is a meta-estimator that combine the learning
+ ability of Decision Tree and the predictive power of Linear Models.
+ Like in tree-based algorithms, the received data are splitted according
+ simple decision rules. The goodness of slits is evaluated in gain terms
+ fitting linear models in each node. This implies that the models in the
+ leaves are linear instead of constant approximations like in classical
+ Decision Tree.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The base estimator to fit on dataset splits.
+ The base estimator must be a sklearn.linear_model.
+
+ criterion : {"mse", "rmse", "mae", "poisson"}, default="mse"
+ The function to measure the quality of a split. "poisson"
+ requires ``y >= 0``.
+
+ max_depth : int, default=5
+ The maximum depth of the tree considering only the splitting nodes.
+ A higher value implies a higher training time.
+
+ min_samples_split : int or float, default=6
+ The minimum number of samples required to split an internal node.
+ The minimum valid number of samples in each node is 6.
+ A lower value implies a higher training time.
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=0.1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least `min_samples_leaf` training samples in each of the left and
+ right branches.
+ The minimum valid number of samples in each leaf is 3.
+ A lower value implies a higher training time.
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ max_bins : int, default=25
+ The maximum number of bins to use to search the optimal split in each
+ feature. Features with a small number of unique values may use less than
+ ``max_bins`` bins. Must be lower than 120 and larger than 10.
+ A higher value implies a higher training time.
+
+ categorical_features : int or array-like of int, default=None
+ Indicates the categorical features.
+ All categorical indices must be in `[0, n_features)`.
+ Categorical features are used for splits but are not used in
+ model fitting.
+ More categorical features imply a higher training time.
+ - None : no feature will be considered categorical.
+ - integer array-like : integer indices indicating categorical
+ features.
+ - integer : integer index indicating a categorical
+ feature.
+
+ split_features : int or array-like of int, default=None
+ Defines which features can be used to split on.
+ All split feature indices must be in `[0, n_features)`.
+ - None : All features will be used for splitting.
+ - integer array-like : integer indices indicating splitting features.
+ - integer : integer index indicating a single splitting feature.
+
+ linear_features : int or array-like of int, default=None
+ Defines which features are used for the linear model in the leaves.
+ All linear feature indices must be in `[0, n_features)`.
+ - None : All features except those in `categorical_features`
+ will be used in the leaf models.
+ - integer array-like : integer indices indicating features to
+ be used in the leaf models.
+ - integer : integer index indicating a single feature to be used
+ in the leaf models.
+
+ n_jobs : int, default=None
+ The number of jobs to run in parallel for model fitting.
+ ``None`` means 1 using one processor. ``-1`` means using all
+ processors.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ feature_importances_ : ndarray of shape (n_features, )
+ Normalized total reduction of criteria by splitting features.
+
+ n_targets_ : int
+ The number of targets when :meth:`fit` is performed.
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import LinearRegression
+ >>> from lineartree import LinearTreeRegressor
+ >>> from sklearn.datasets import make_regression
+ >>> X, y = make_regression(n_samples=100, n_features=4,
+ ... n_informative=2, n_targets=1,
+ ... random_state=0, shuffle=False)
+ >>> regr = LinearTreeRegressor(base_estimator=LinearRegression())
+ >>> regr.fit(X, y)
+ >>> regr.predict([[0, 0, 0, 0]])
+ array([8.8817842e-16])
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ criterion="mse",
+ max_depth=5,
+ min_samples_split=6,
+ min_samples_leaf=0.1,
+ max_bins=25,
+ categorical_features=None,
+ split_features=None,
+ linear_features=None,
+ n_jobs=None
+ ):
+
+ self.base_estimator = base_estimator
+ self.criterion = criterion
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.max_bins = max_bins
+ self.categorical_features = categorical_features
+ self.split_features = split_features
+ self.linear_features = linear_features
+ self.n_jobs = n_jobs
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Tree of a linear estimator from the training
+ set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or (n_samples, n_targets)
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights. If None, then samples are equally weighted.
+ Note that if the base estimator does not support sample weighting,
+ the sample weights are still used to evaluate the splits.
+
+ Returns
+ -------
+ self : object
+ """
+ reg_criterions = ("mse", "rmse", "mae", "poisson")
+
+ if self.criterion not in reg_criterions:
+ raise ValueError(
+ "Regression tasks support only criterion in {}, "
+ "got '{}'.".format(reg_criterions, self.criterion)
+ )
+
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X,
+ y,
+ accept_sparse=False,
+ dtype=None,
+ force_all_finite=False,
+ multi_output=True,
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ y_shape = np.shape(y)
+ self.n_targets_ = y_shape[1] if len(y_shape) > 1 else 1
+ if self.n_targets_ < 2:
+ y = y.ravel()
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def predict(self, X):
+ """Predict regression target for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
+ multitarget regression.
+ The predicted values.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
+ self._check_n_features(X, reset=False)
+
+ if self.n_targets_ > 1:
+ pred = np.zeros((X.shape[0], self.n_targets_))
+ else:
+ pred = np.zeros(X.shape[0])
+
+ for L in self._leaves.values():
+
+ mask = _predict_branch(X, L.threshold)
+ if (~mask).all():
+ continue
+
+ pred[mask] = L.model.predict(X[np.ix_(mask, self._linear_features)])
+
+ return pred
+
+
+class LinearTreeClassifier(_LinearTree, ClassifierMixin):
+ """A Linear Tree Classifier.
+
+ A Linear Tree Classifier is a meta-estimator that combine the learning
+ ability of Decision Tree and the predictive power of Linear Models.
+ Like in tree-based algorithms, the received data are splitted according
+ simple decision rules. The goodness of slits is evaluated in gain terms
+ fitting linear models in each node. This implies that the models in the
+ leaves are linear instead of constant approximations like in classical
+ Decision Tree.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The base estimator to fit on dataset splits.
+ The base estimator must be a sklearn.linear_model.
+ The selected base estimator is automatically substituted by a
+ `~sklearn.dummy.DummyClassifier` when a dataset split
+ is composed of unique labels.
+
+ criterion : {"hamming", "crossentropy"}, default="hamming"
+ The function to measure the quality of a split. `"crossentropy"`
+ can be used only if `base_estimator` has `predict_proba` method.
+
+ max_depth : int, default=5
+ The maximum depth of the tree considering only the splitting nodes.
+ A higher value implies a higher training time.
+
+ min_samples_split : int or float, default=6
+ The minimum number of samples required to split an internal node.
+ The minimum valid number of samples in each node is 6.
+ A lower value implies a higher training time.
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=0.1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least `min_samples_leaf` training samples in each of the left and
+ right branches.
+ The minimum valid number of samples in each leaf is 3.
+ A lower value implies a higher training time.
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ max_bins : int, default=25
+ The maximum number of bins to use to search the optimal split in each
+ feature. Features with a small number of unique values may use less than
+ ``max_bins`` bins. Must be lower than 120 and larger than 10.
+ A higher value implies a higher training time.
+
+ categorical_features : int or array-like of int, default=None
+ Indicates the categorical features.
+ All categorical indices must be in `[0, n_features)`.
+ Categorical features are used for splits but are not used in
+ model fitting.
+ More categorical features imply a higher training time.
+ - None : no feature will be considered categorical.
+ - integer array-like : integer indices indicating categorical
+ features.
+ - integer : integer index indicating a categorical
+ feature.
+
+ split_features : int or array-like of int, default=None
+ Defines which features can be used to split on.
+ All split feature indices must be in `[0, n_features)`.
+ - None : All features will be used for splitting.
+ - integer array-like : integer indices indicating splitting features.
+ - integer : integer index indicating a single splitting feature.
+
+ linear_features : int or array-like of int, default=None
+ Defines which features are used for the linear model in the leaves.
+ All linear feature indices must be in `[0, n_features)`.
+ - None : All features except those in `categorical_features`
+ will be used in the leaf models.
+ - integer array-like : integer indices indicating features to
+ be used in the leaf models.
+ - integer : integer index indicating a single feature to be used
+ in the leaf models.
+
+ n_jobs : int, default=None
+ The number of jobs to run in parallel for model fitting.
+ ``None`` means 1 using one processor. ``-1`` means using all
+ processors.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ feature_importances_ : ndarray of shape (n_features, )
+ Normalized total reduction of criteria by splitting features.
+
+ classes_ : ndarray of shape (n_classes, )
+ A list of class labels known to the classifier.
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import RidgeClassifier
+ >>> from lineartree import LinearTreeClassifier
+ >>> from sklearn.datasets import make_classification
+ >>> X, y = make_classification(n_samples=100, n_features=4,
+ ... n_informative=2, n_redundant=0,
+ ... random_state=0, shuffle=False)
+ >>> clf = LinearTreeClassifier(base_estimator=RidgeClassifier())
+ >>> clf.fit(X, y)
+ >>> clf.predict([[0, 0, 0, 0]])
+ array([1])
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ criterion="hamming",
+ max_depth=5,
+ min_samples_split=6,
+ min_samples_leaf=0.1,
+ max_bins=25,
+ categorical_features=None,
+ split_features=None,
+ linear_features=None,
+ n_jobs=None
+ ):
+
+ self.base_estimator = base_estimator
+ self.criterion = criterion
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.max_bins = max_bins
+ self.categorical_features = categorical_features
+ self.split_features = split_features
+ self.linear_features = linear_features
+ self.n_jobs = n_jobs
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Tree of a linear estimator from the training
+ set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, )
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights. If None, then samples are equally weighted.
+ Note that if the base estimator does not support sample weighting,
+ the sample weights are still used to evaluate the splits.
+
+ Returns
+ -------
+ self : object
+ """
+ clas_criterions = ("hamming", "crossentropy")
+
+ if self.criterion not in clas_criterions:
+ raise ValueError(
+ "Classification tasks support only criterion in {}, "
+ "got '{}'.".format(clas_criterions, self.criterion)
+ )
+
+ if (
+ not hasattr(self.base_estimator, "predict_proba")
+ and self.criterion == "crossentropy"
+ ):
+ raise ValueError(
+ "The 'crossentropy' criterion requires a base_estimator "
+ "with predict_proba method."
+ )
+
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X,
+ y,
+ accept_sparse=False,
+ dtype=None,
+ force_all_finite=False,
+ multi_output=False,
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ self.classes_ = np.unique(y)
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def predict(self, X):
+ """Predict class for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, )
+ The predicted classes.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
+ self._check_n_features(X, reset=False)
+
+ pred = np.empty(X.shape[0], dtype=self.classes_.dtype)
+
+ for L in self._leaves.values():
+
+ mask = _predict_branch(X, L.threshold)
+ if (~mask).all():
+ continue
+
+ pred[mask] = L.model.predict(X[np.ix_(mask, self._linear_features)])
+
+ return pred
+
+ def predict_proba(self, X):
+ """Predict class probabilities for X.
+
+ If base estimators do not implement a ``predict_proba`` method,
+ then the one-hot encoding of the predicted class is returned.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, n_classes)
+ The class probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ check_is_fitted(self, attributes="_nodes")
+
+ X = check_array(X, accept_sparse=False, dtype=None, force_all_finite=False)
+ self._check_n_features(X, reset=False)
+
+ pred = np.zeros((X.shape[0], len(self.classes_)))
+
+ if hasattr(self.base_estimator, "predict_proba"):
+ for L in self._leaves.values():
+
+ mask = _predict_branch(X, L.threshold)
+ if (~mask).all():
+ continue
+
+ pred[
+ np.ix_(mask, np.isin(self.classes_, L.classes))
+ ] = L.model.predict_proba(X[np.ix_(mask, self._linear_features)])
+
+ else:
+ pred_class = self.predict(X)
+ class_to_int = dict(map(reversed, enumerate(self.classes_)))
+ pred_class = np.array([class_to_int[i] for i in pred_class])
+ pred[np.arange(X.shape[0]), pred_class] = 1
+
+ return pred
+
+ def predict_log_proba(self, X):
+ """Predict class log-probabilities for X.
+
+ If base estimators do not implement a ``predict_log_proba`` method,
+ then the logarithm of the one-hot encoded predicted class is returned.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, n_classes)
+ The class log-probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ return np.log(self.predict_proba(X))
+
+
+class LinearBoostRegressor(_LinearBoosting, RegressorMixin):
+ """A Linear Boosting Regressor.
+
+ A Linear Boosting Regressor is an iterative meta-estimator that starts
+ with a linear regressor, and model the residuals through decision trees.
+ At each iteration, the path leading to highest error (i.e. the worst leaf)
+ is added as a new binary variable to the base model. This kind of Linear
+ Boosting can be considered as an improvement over general linear models
+ since it enables incorporating non-linear features by residuals modeling.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The base estimator iteratively fitted.
+ The base estimator must be a sklearn.linear_model.
+
+ loss : {"linear", "square", "absolute", "exponential"}, default="linear"
+ The function used to calculate the residuals of each sample.
+
+ n_estimators : int, default=10
+ The number of boosting stages to perform. It corresponds to the number
+ of the new features generated.
+
+ max_depth : int, default=3
+ The maximum depth of the tree. If None, then nodes are expanded until
+ all leaves are pure or until all leaves contain less than
+ min_samples_split samples.
+
+ min_samples_split : int or float, default=2
+ The minimum number of samples required to split an internal node:
+
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least ``min_samples_leaf`` training samples in each of the left and
+ right branches. This may have the effect of smoothing the model,
+ especially in regression.
+
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ min_weight_fraction_leaf : float, default=0.0
+ The minimum weighted fraction of the sum total of weights (of all
+ the input samples) required to be at a leaf node. Samples have
+ equal weight when sample_weight is not provided.
+
+ max_features : int, float or {"auto", "sqrt", "log2"}, default=None
+ The number of features to consider when looking for the best split:
+
+ - If int, then consider `max_features` features at each split.
+ - If float, then `max_features` is a fraction and
+ `int(max_features * n_features)` features are considered at each
+ split.
+ - If "auto", then `max_features=n_features`.
+ - If "sqrt", then `max_features=sqrt(n_features)`.
+ - If "log2", then `max_features=log2(n_features)`.
+ - If None, then `max_features=n_features`.
+
+ Note: the search for a split does not stop until at least one
+ valid partition of the node samples is found, even if it requires to
+ effectively inspect more than ``max_features`` features.
+
+ random_state : int, RandomState instance or None, default=None
+ Controls the randomness of the estimator.
+
+ max_leaf_nodes : int, default=None
+ Grow a tree with ``max_leaf_nodes`` in best-first fashion.
+ Best nodes are defined as relative reduction in impurity.
+ If None then unlimited number of leaf nodes.
+
+ min_impurity_decrease : float, default=0.0
+ A node will be split if this split induces a decrease of the impurity
+ greater than or equal to this value.
+
+ ccp_alpha : non-negative float, default=0.0
+ Complexity parameter used for Minimal Cost-Complexity Pruning. The
+ subtree with the largest cost complexity that is smaller than
+ ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
+ :ref:`minimal_cost_complexity_pruning` for details.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ n_features_out_ : int
+ The total number of features used to fit the base estimator in the
+ last iteration. The number of output features is equal to the sum
+ of n_features_in_ and n_estimators.
+
+ coef_ : array of shape (n_features_out_, ) or (n_targets, n_features_out_)
+ Estimated coefficients for the linear regression problem.
+ If multiple targets are passed during the fit (y 2D), this is a
+ 2D array of shape (n_targets, n_features_out_), while if only one target
+ is passed, this is a 1D array of length n_features_out_.
+
+ intercept_ : float or array of shape (n_targets, )
+ Independent term in the linear model. Set to 0 if `fit_intercept = False`
+ in `base_estimator`
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import LinearRegression
+ >>> from lineartree import LinearBoostRegressor
+ >>> from sklearn.datasets import make_regression
+ >>> X, y = make_regression(n_samples=100, n_features=4,
+ ... n_informative=2, n_targets=1,
+ ... random_state=0, shuffle=False)
+ >>> regr = LinearBoostRegressor(base_estimator=LinearRegression())
+ >>> regr.fit(X, y)
+ >>> regr.predict([[0, 0, 0, 0]])
+ array([8.8817842e-16])
+
+ References
+ ----------
+ Explainable boosted linear regression for time series forecasting.
+ Authors: Igor Ilic, Berk Gorgulu, Mucahit Cevik, Mustafa Gokce Baydogan.
+ (https://arxiv.org/abs/2009.09110)
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ loss="linear",
+ n_estimators=10,
+ max_depth=3,
+ min_samples_split=2,
+ min_samples_leaf=1,
+ min_weight_fraction_leaf=0.0,
+ max_features=None,
+ random_state=None,
+ max_leaf_nodes=None,
+ min_impurity_decrease=0.0,
+ ccp_alpha=0.0
+ ):
+
+ self.base_estimator = base_estimator
+ self.loss = loss
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.random_state = random_state
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.ccp_alpha = ccp_alpha
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Boosting from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or (n_samples, n_targets)
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ reg_losses = ("linear", "square", "absolute", "exponential")
+
+ if self.loss not in reg_losses:
+ raise ValueError(
+ "Regression tasks support only loss in {}, "
+ "got '{}'.".format(reg_losses, self.loss)
+ )
+
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X, y, accept_sparse=False, dtype=np.float32, multi_output=True
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ y_shape = np.shape(y)
+ n_targets = y_shape[1] if len(y_shape) > 1 else 1
+ if n_targets < 2:
+ y = y.ravel()
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def predict(self, X):
+ """Predict regression target for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
+ multitarget regression.
+ The predicted values.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+
+ return self.base_estimator_.predict(self.transform(X))
+
+
+class LinearBoostClassifier(_LinearBoosting, ClassifierMixin):
+ """A Linear Boosting Classifier.
+
+ A Linear Boosting Classifier is an iterative meta-estimator that starts
+ with a linear classifier, and model the residuals through decision trees.
+ At each iteration, the path leading to highest error (i.e. the worst leaf)
+ is added as a new binary variable to the base model. This kind of Linear
+ Boosting can be considered as an improvement over general linear models
+ since it enables incorporating non-linear features by residuals modeling.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The base estimator iteratively fitted.
+ The base estimator must be a sklearn.linear_model.
+
+ loss : {"hamming", "entropy"}, default="entropy"
+ The function used to calculate the residuals of each sample.
+ `"entropy"` can be used only if `base_estimator` has `predict_proba`
+ method.
+
+ n_estimators : int, default=10
+ The number of boosting stages to perform. It corresponds to the number
+ of the new features generated.
+
+ max_depth : int, default=3
+ The maximum depth of the tree. If None, then nodes are expanded until
+ all leaves are pure or until all leaves contain less than
+ min_samples_split samples.
+
+ min_samples_split : int or float, default=2
+ The minimum number of samples required to split an internal node:
+
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least ``min_samples_leaf`` training samples in each of the left and
+ right branches. This may have the effect of smoothing the model,
+ especially in regression.
+
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ min_weight_fraction_leaf : float, default=0.0
+ The minimum weighted fraction of the sum total of weights (of all
+ the input samples) required to be at a leaf node. Samples have
+ equal weight when sample_weight is not provided.
+
+ max_features : int, float or {"auto", "sqrt", "log2"}, default=None
+ The number of features to consider when looking for the best split:
+
+ - If int, then consider `max_features` features at each split.
+ - If float, then `max_features` is a fraction and
+ `int(max_features * n_features)` features are considered at each
+ split.
+ - If "auto", then `max_features=n_features`.
+ - If "sqrt", then `max_features=sqrt(n_features)`.
+ - If "log2", then `max_features=log2(n_features)`.
+ - If None, then `max_features=n_features`.
+
+ Note: the search for a split does not stop until at least one
+ valid partition of the node samples is found, even if it requires to
+ effectively inspect more than ``max_features`` features.
+
+ random_state : int, RandomState instance or None, default=None
+ Controls the randomness of the estimator.
+
+ max_leaf_nodes : int, default=None
+ Grow a tree with ``max_leaf_nodes`` in best-first fashion.
+ Best nodes are defined as relative reduction in impurity.
+ If None then unlimited number of leaf nodes.
+
+ min_impurity_decrease : float, default=0.0
+ A node will be split if this split induces a decrease of the impurity
+ greater than or equal to this value.
+
+ ccp_alpha : non-negative float, default=0.0
+ Complexity parameter used for Minimal Cost-Complexity Pruning. The
+ subtree with the largest cost complexity that is smaller than
+ ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
+ :ref:`minimal_cost_complexity_pruning` for details.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ n_features_out_ : int
+ The total number of features used to fit the base estimator in the
+ last iteration. The number of output features is equal to the sum
+ of n_features_in_ and n_estimators.
+
+ coef_ : ndarray of shape (1, n_features_out_) or (n_classes, n_features_out_)
+ Coefficient of the features in the decision function.
+
+ intercept_ : float or array of shape (n_classes, )
+ Independent term in the linear model. Set to 0 if `fit_intercept = False`
+ in `base_estimator`
+
+ classes_ : ndarray of shape (n_classes, )
+ A list of class labels known to the classifier.
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import RidgeClassifier
+ >>> from lineartree import LinearBoostClassifier
+ >>> from sklearn.datasets import make_classification
+ >>> X, y = make_classification(n_samples=100, n_features=4,
+ ... n_informative=2, n_redundant=0,
+ ... random_state=0, shuffle=False)
+ >>> clf = LinearBoostClassifier(base_estimator=RidgeClassifier())
+ >>> clf.fit(X, y)
+ >>> clf.predict([[0, 0, 0, 0]])
+ array([1])
+
+ References
+ ----------
+ Explainable boosted linear regression for time series forecasting.
+ Authors: Igor Ilic, Berk Gorgulu, Mucahit Cevik, Mustafa Gokce Baydogan.
+ (https://arxiv.org/abs/2009.09110)
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ loss="hamming",
+ n_estimators=10,
+ max_depth=3,
+ min_samples_split=2,
+ min_samples_leaf=1,
+ min_weight_fraction_leaf=0.0,
+ max_features=None,
+ random_state=None,
+ max_leaf_nodes=None,
+ min_impurity_decrease=0.0,
+ ccp_alpha=0.0
+ ):
+
+ self.base_estimator = base_estimator
+ self.loss = loss
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.random_state = random_state
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.ccp_alpha = ccp_alpha
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Boosting from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, )
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ clas_losses = ("hamming", "entropy")
+
+ if self.loss not in clas_losses:
+ raise ValueError(
+ "Classification tasks support only loss in {}, "
+ "got '{}'.".format(clas_losses, self.loss)
+ )
+
+ if not hasattr(self.base_estimator, "predict_proba") and self.loss == "entropy":
+ raise ValueError(
+ "The 'entropy' loss requires a base_estimator "
+ "with predict_proba method."
+ )
+
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X, y, accept_sparse=False, dtype=np.float32, multi_output=False
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ self.classes_ = np.unique(y)
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def predict(self, X):
+ """Predict class for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, )
+ The predicted classes.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+
+ return self.base_estimator_.predict(self.transform(X))
+
+ def predict_proba(self, X):
+ """Predict class probabilities for X.
+
+ If base estimators do not implement a ``predict_proba`` method,
+ then the one-hot encoding of the predicted class is returned.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, n_classes)
+ The class probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ if hasattr(self.base_estimator, "predict_proba"):
+ check_is_fitted(self, attributes="base_estimator_")
+ pred = self.base_estimator_.predict_proba(self.transform(X))
+
+ else:
+ pred_class = self.predict(X)
+ pred = np.zeros((pred_class.shape[0], len(self.classes_)))
+ class_to_int = dict(map(reversed, enumerate(self.classes_)))
+ pred_class = np.array([class_to_int[v] for v in pred_class])
+ pred[np.arange(pred_class.shape[0]), pred_class] = 1
+
+ return pred
+
+ def predict_log_proba(self, X):
+ """Predict class log-probabilities for X.
+
+ If base estimators do not implement a ``predict_log_proba`` method,
+ then the logarithm of the one-hot encoded predicted class is returned.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, n_classes)
+ The class log-probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ return np.log(self.predict_proba(X))
+
+
+class LinearForestClassifier(_LinearForest, ClassifierMixin):
+ """ "A Linear Forest Classifier.
+
+ Linear forests generalizes the well known random forests by combining
+ linear models with the same random forests.
+ The key idea of linear forests is to use the strength of linear models
+ to improve the nonparametric learning ability of tree-based algorithms.
+ Firstly, a linear model is fitted on the whole dataset, then a random
+ forest is trained on the same dataset but using the residuals of the
+ previous steps as target. The final predictions are the sum of the raw
+ linear predictions and the residuals modeled by the random forest.
+
+ For classification tasks the same approach used in regression context
+ is adopted. The binary targets are transformed into logits using the
+ inverse sigmoid function. A linear regression is fitted. A random forest
+ regressor is trained to approximate the residulas from logits and linear
+ predictions. Finally the sigmoid of the combinded predictions are taken
+ to obtain probabilities.
+ The multi-label scenario is carried out using OneVsRestClassifier.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The linear estimator fitted on the raw target.
+ The linear estimator must be a regressor from sklearn.linear_model.
+
+ n_estimators : int, default=100
+ The number of trees in the forest.
+
+ max_depth : int, default=None
+ The maximum depth of the tree. If None, then nodes are expanded until
+ all leaves are pure or until all leaves contain less than
+ min_samples_split samples.
+
+ min_samples_split : int or float, default=2
+ The minimum number of samples required to split an internal node:
+
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least ``min_samples_leaf`` training samples in each of the left and
+ right branches. This may have the effect of smoothing the model,
+ especially in regression.
+
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ min_weight_fraction_leaf : float, default=0.0
+ The minimum weighted fraction of the sum total of weights (of all
+ the input samples) required to be at a leaf node. Samples have
+ equal weight when sample_weight is not provided.
+
+ max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
+ The number of features to consider when looking for the best split:
+
+ - If int, then consider `max_features` features at each split.
+ - If float, then `max_features` is a fraction and
+ `round(max_features * n_features)` features are considered at each
+ split.
+ - If "auto", then `max_features=n_features`.
+ - If "sqrt", then `max_features=sqrt(n_features)`.
+ - If "log2", then `max_features=log2(n_features)`.
+ - If None, then `max_features=n_features`.
+
+ Note: the search for a split does not stop until at least one
+ valid partition of the node samples is found, even if it requires to
+ effectively inspect more than ``max_features`` features.
+
+ max_leaf_nodes : int, default=None
+ Grow trees with ``max_leaf_nodes`` in best-first fashion.
+ Best nodes are defined as relative reduction in impurity.
+ If None then unlimited number of leaf nodes.
+
+ min_impurity_decrease : float, default=0.0
+ A node will be split if this split induces a decrease of the impurity
+ greater than or equal to this value.
+
+ bootstrap : bool, default=True
+ Whether bootstrap samples are used when building trees. If False, the
+ whole dataset is used to build each tree.
+
+ oob_score : bool, default=False
+ Whether to use out-of-bag samples to estimate the generalization score.
+ Only available if bootstrap=True.
+
+ n_jobs : int, default=None
+ The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
+ :meth:`decision_path` and :meth:`apply` are all parallelized over the
+ trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
+ context. ``-1`` means using all processors.
+
+ random_state : int, RandomState instance or None, default=None
+ Controls both the randomness of the bootstrapping of the samples used
+ when building trees (if ``bootstrap=True``) and the sampling of the
+ features to consider when looking for the best split at each node
+ (if ``max_features < n_features``).
+
+ ccp_alpha : non-negative float, default=0.0
+ Complexity parameter used for Minimal Cost-Complexity Pruning. The
+ subtree with the largest cost complexity that is smaller than
+ ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
+ :ref:`minimal_cost_complexity_pruning` for details.
+
+ max_samples : int or float, default=None
+ If bootstrap is True, the number of samples to draw from X
+ to train each base estimator.
+
+ - If None (default), then draw `X.shape[0]` samples.
+ - If int, then draw `max_samples` samples.
+ - If float, then draw `max_samples * X.shape[0]` samples. Thus,
+ `max_samples` should be in the interval `(0, 1]`.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ feature_importances_ : ndarray of shape (n_features, )
+ The impurity-based feature importances.
+ The higher, the more important the feature.
+ The importance of a feature is computed as the (normalized)
+ total reduction of the criterion brought by that feature. It is also
+ known as the Gini importance.
+
+ coef_ : ndarray of shape (1, n_features_out_)
+ Coefficient of the features in the decision function.
+
+ intercept_ : float
+ Independent term in the linear model. Set to 0 if `fit_intercept = False`
+ in `base_estimator`.
+
+ classes_ : ndarray of shape (n_classes, )
+ A list of class labels known to the classifier.
+
+ base_estimator_ : object
+ A fitted linear model instance.
+
+ forest_estimator_ : object
+ A fitted random forest instance.
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import LinearRegression
+ >>> from lineartree import LinearForestClassifier
+ >>> from sklearn.datasets import make_classification
+ >>> X, y = make_classification(n_samples=100, n_classes=2, n_features=4,
+ ... n_informative=2, n_redundant=0,
+ ... random_state=0, shuffle=False)
+ >>> clf = LinearForestClassifier(base_estimator=LinearRegression())
+ >>> clf.fit(X, y)
+ >>> clf.predict([[0, 0, 0, 0]])
+ array([1])
+
+ References
+ ----------
+ Regression-Enhanced Random Forests.
+ Authors: Haozhe Zhang, Dan Nettleton, Zhengyuan Zhu.
+ (https://arxiv.org/abs/1904.10416)
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ n_estimators=100,
+ max_depth=None,
+ min_samples_split=2,
+ min_samples_leaf=1,
+ min_weight_fraction_leaf=0.0,
+ max_features="auto",
+ max_leaf_nodes=None,
+ min_impurity_decrease=0.0,
+ bootstrap=True,
+ oob_score=False,
+ n_jobs=None,
+ random_state=None,
+ ccp_alpha=0.0,
+ max_samples=None
+ ):
+
+ self.base_estimator = base_estimator
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.bootstrap = bootstrap
+ self.oob_score = oob_score
+ self.n_jobs = n_jobs
+ self.random_state = random_state
+ self.ccp_alpha = ccp_alpha
+ self.max_samples = max_samples
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Forest from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or (n_samples, n_targets)
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X, y, accept_sparse=True, dtype=None, multi_output=False
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ self.classes_ = np.unique(y)
+ if len(self.classes_) > 2:
+ raise ValueError(
+ "LinearForestClassifier supports only binary classification task. "
+ "To solve a multi-lable classification task use "
+ "LinearForestClassifier with OneVsRestClassifier from sklearn."
+ )
+
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def decision_function(self, X):
+ """Predict confidence scores for samples.
+
+ The confidence score for a sample is proportional to the signed
+ distance of that sample to the hyperplane.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, )
+ Confidence scores.
+ Confidence score for self.classes_[1] where >0 means this
+ class would be predicted.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+ X = check_array(X, dtype=None, accept_sparse=False)
+ self._check_n_features(X, reset=False)
+
+ linear_pred = self.base_estimator_.predict(X)
+ forest_pred = self.forest_estimator_.predict(X)
+
+ return linear_pred + forest_pred
+
+ def predict(self, X):
+ """Predict class for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, )
+ The predicted classes.
+ """
+ pred = self.decision_function(X)
+ pred_class = (self._sigmoid(pred) > 0.5).astype(int)
+ int_to_class = dict(enumerate(self.classes_))
+ pred_class = np.array([int_to_class[i] for i in pred_class])
+
+ return pred_class
+
+ def predict_proba(self, X):
+ """Predict class probabilities for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ proba : ndarray of shape (n_samples, n_classes)
+ The class probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+ X = check_array(X, dtype=None, accept_sparse=False)
+ self._check_n_features(X, reset=False)
+
+ pred = self._sigmoid(self.base_estimator_.predict(X))
+ proba = np.zeros((X.shape[0], 2))
+ proba[:, 0] = 1 - pred
+ proba[:, 1] = pred
+
+ return proba
+
+ def predict_log_proba(self, X):
+ """Predict class log-probabilities for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, n_classes)
+ The class log-probabilities of the input samples. The order of the
+ classes corresponds to that in the attribute :term:`classes_`.
+ """
+ return np.log(self.predict_proba(X))
+
+
+class LinearForestRegressor(_LinearForest, RegressorMixin):
+ """ "A Linear Forest Regressor.
+
+ Linear forests generalizes the well known random forests by combining
+ linear models with the same random forests.
+ The key idea of linear forests is to use the strength of linear models
+ to improve the nonparametric learning ability of tree-based algorithms.
+ Firstly, a linear model is fitted on the whole dataset, then a random
+ forest is trained on the same dataset but using the residuals of the
+ previous steps as target. The final predictions are the sum of the raw
+ linear predictions and the residuals modeled by the random forest.
+
+ Parameters
+ ----------
+ base_estimator : object
+ The linear estimator fitted on the raw target.
+ The linear estimator must be a regressor from sklearn.linear_model.
+
+ n_estimators : int, default=100
+ The number of trees in the forest.
+
+ max_depth : int, default=None
+ The maximum depth of the tree. If None, then nodes are expanded until
+ all leaves are pure or until all leaves contain less than
+ min_samples_split samples.
+
+ min_samples_split : int or float, default=2
+ The minimum number of samples required to split an internal node:
+
+ - If int, then consider `min_samples_split` as the minimum number.
+ - If float, then `min_samples_split` is a fraction and
+ `ceil(min_samples_split * n_samples)` are the minimum
+ number of samples for each split.
+
+ min_samples_leaf : int or float, default=1
+ The minimum number of samples required to be at a leaf node.
+ A split point at any depth will only be considered if it leaves at
+ least ``min_samples_leaf`` training samples in each of the left and
+ right branches. This may have the effect of smoothing the model,
+ especially in regression.
+
+ - If int, then consider `min_samples_leaf` as the minimum number.
+ - If float, then `min_samples_leaf` is a fraction and
+ `ceil(min_samples_leaf * n_samples)` are the minimum
+ number of samples for each node.
+
+ min_weight_fraction_leaf : float, default=0.0
+ The minimum weighted fraction of the sum total of weights (of all
+ the input samples) required to be at a leaf node. Samples have
+ equal weight when sample_weight is not provided.
+
+ max_features : {"auto", "sqrt", "log2"}, int or float, default="auto"
+ The number of features to consider when looking for the best split:
+
+ - If int, then consider `max_features` features at each split.
+ - If float, then `max_features` is a fraction and
+ `round(max_features * n_features)` features are considered at each
+ split.
+ - If "auto", then `max_features=n_features`.
+ - If "sqrt", then `max_features=sqrt(n_features)`.
+ - If "log2", then `max_features=log2(n_features)`.
+ - If None, then `max_features=n_features`.
+
+ Note: the search for a split does not stop until at least one
+ valid partition of the node samples is found, even if it requires to
+ effectively inspect more than ``max_features`` features.
+
+ max_leaf_nodes : int, default=None
+ Grow trees with ``max_leaf_nodes`` in best-first fashion.
+ Best nodes are defined as relative reduction in impurity.
+ If None then unlimited number of leaf nodes.
+
+ min_impurity_decrease : float, default=0.0
+ A node will be split if this split induces a decrease of the impurity
+ greater than or equal to this value.
+
+ bootstrap : bool, default=True
+ Whether bootstrap samples are used when building trees. If False, the
+ whole dataset is used to build each tree.
+
+ oob_score : bool, default=False
+ Whether to use out-of-bag samples to estimate the generalization score.
+ Only available if bootstrap=True.
+
+ n_jobs : int, default=None
+ The number of jobs to run in parallel. :meth:`fit`, :meth:`predict`,
+ :meth:`decision_path` and :meth:`apply` are all parallelized over the
+ trees. ``None`` means 1 unless in a :obj:`joblib.parallel_backend`
+ context. ``-1`` means using all processors.
+
+ random_state : int, RandomState instance or None, default=None
+ Controls both the randomness of the bootstrapping of the samples used
+ when building trees (if ``bootstrap=True``) and the sampling of the
+ features to consider when looking for the best split at each node
+ (if ``max_features < n_features``).
+
+ ccp_alpha : non-negative float, default=0.0
+ Complexity parameter used for Minimal Cost-Complexity Pruning. The
+ subtree with the largest cost complexity that is smaller than
+ ``ccp_alpha`` will be chosen. By default, no pruning is performed. See
+ :ref:`minimal_cost_complexity_pruning` for details.
+
+ max_samples : int or float, default=None
+ If bootstrap is True, the number of samples to draw from X
+ to train each base estimator.
+
+ - If None (default), then draw `X.shape[0]` samples.
+ - If int, then draw `max_samples` samples.
+ - If float, then draw `max_samples * X.shape[0]` samples. Thus,
+ `max_samples` should be in the interval `(0, 1]`.
+
+ Attributes
+ ----------
+ n_features_in_ : int
+ The number of features when :meth:`fit` is performed.
+
+ feature_importances_ : ndarray of shape (n_features, )
+ The impurity-based feature importances.
+ The higher, the more important the feature.
+ The importance of a feature is computed as the (normalized)
+ total reduction of the criterion brought by that feature. It is also
+ known as the Gini importance.
+
+ coef_ : array of shape (n_features, ) or (n_targets, n_features)
+ Estimated coefficients for the linear regression problem.
+ If multiple targets are passed during the fit (y 2D), this is a
+ 2D array of shape (n_targets, n_features), while if only one target
+ is passed, this is a 1D array of length n_features.
+
+ intercept_ : float or array of shape (n_targets,)
+ Independent term in the linear model. Set to 0 if `fit_intercept = False`
+ in `base_estimator`.
+
+ base_estimator_ : object
+ A fitted linear model instance.
+
+ forest_estimator_ : object
+ A fitted random forest instance.
+
+ Examples
+ --------
+ >>> from sklearn.linear_model import LinearRegression
+ >>> from lineartree import LinearForestRegressor
+ >>> from sklearn.datasets import make_regression
+ >>> X, y = make_regression(n_samples=100, n_features=4,
+ ... n_informative=2, n_targets=1,
+ ... random_state=0, shuffle=False)
+ >>> regr = LinearForestRegressor(base_estimator=LinearRegression())
+ >>> regr.fit(X, y)
+ >>> regr.predict([[0, 0, 0, 0]])
+ array([8.8817842e-16])
+
+ References
+ ----------
+ Regression-Enhanced Random Forests.
+ Authors: Haozhe Zhang, Dan Nettleton, Zhengyuan Zhu.
+ (https://arxiv.org/abs/1904.10416)
+ """
+
+ def __init__(
+ self,
+ base_estimator,
+ *,
+ n_estimators=100,
+ max_depth=None,
+ min_samples_split=2,
+ min_samples_leaf=1,
+ min_weight_fraction_leaf=0.0,
+ max_features="auto",
+ max_leaf_nodes=None,
+ min_impurity_decrease=0.0,
+ bootstrap=True,
+ oob_score=False,
+ n_jobs=None,
+ random_state=None,
+ ccp_alpha=0.0,
+ max_samples=None
+ ):
+
+ self.base_estimator = base_estimator
+ self.n_estimators = n_estimators
+ self.max_depth = max_depth
+ self.min_samples_split = min_samples_split
+ self.min_samples_leaf = min_samples_leaf
+ self.min_weight_fraction_leaf = min_weight_fraction_leaf
+ self.max_features = max_features
+ self.max_leaf_nodes = max_leaf_nodes
+ self.min_impurity_decrease = min_impurity_decrease
+ self.bootstrap = bootstrap
+ self.oob_score = oob_score
+ self.n_jobs = n_jobs
+ self.random_state = random_state
+ self.ccp_alpha = ccp_alpha
+ self.max_samples = max_samples
+
+ def fit(self, X, y, sample_weight=None):
+ """Build a Linear Forest from the training set (X, y).
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ The training input samples.
+
+ y : array-like of shape (n_samples, ) or (n_samples, n_targets)
+ Target values.
+
+ sample_weight : array-like of shape (n_samples, ), default=None
+ Sample weights.
+
+ Returns
+ -------
+ self : object
+ """
+ # Convert data (X is required to be 2d and indexable)
+ X, y = self._validate_data(
+ X, y, accept_sparse=True, dtype=None, multi_output=True
+ )
+ if sample_weight is not None:
+ sample_weight = _check_sample_weight(sample_weight, X, dtype=None)
+
+ y_shape = np.shape(y)
+ n_targets = y_shape[1] if len(y_shape) > 1 else 1
+ if n_targets < 2:
+ y = y.ravel()
+ self._fit(X, y, sample_weight)
+
+ return self
+
+ def predict(self, X):
+ """Predict regression target for X.
+
+ Parameters
+ ----------
+ X : array-like of shape (n_samples, n_features)
+ Samples.
+
+ Returns
+ -------
+ pred : ndarray of shape (n_samples, ) or also (n_samples, n_targets) if
+ multitarget regression.
+ The predicted values.
+ """
+ check_is_fitted(self, attributes="base_estimator_")
+ X = check_array(X, dtype=None, accept_sparse=False)
+ self._check_n_features(X, reset=False)
+
+ linear_pred = self.base_estimator_.predict(X)
+ forest_pred = self.forest_estimator_.predict(X)
+
+ return linear_pred + forest_pred
diff --git a/lib/model.py b/lib/model.py
index 1270cf6..7a28197 100644
--- a/lib/model.py
+++ b/lib/model.py
@@ -160,6 +160,7 @@ class AnalyticModel:
with_sklearn_cart = bool(
int(os.getenv("DFATOOL_DTREE_SKLEARN_CART", "0"))
)
+ with_lmt = bool(int(os.getenv("DFATOOL_DTREE_LMT", "0")))
with_xgboost = bool(int(os.getenv("DFATOOL_USE_XGBOOST", "0")))
loss_ignore_scalar = bool(
int(os.getenv("DFATOOL_DTREE_LOSS_IGNORE_SCALAR", "0"))
@@ -174,6 +175,7 @@ class AnalyticModel:
with_function_leaves=with_function_leaves,
with_nonbinary_nodes=with_nonbinary_nodes,
with_sklearn_cart=with_sklearn_cart,
+ with_lmt=with_lmt,
with_xgboost=with_xgboost,
loss_ignore_scalar=loss_ignore_scalar,
)
@@ -326,6 +328,7 @@ class AnalyticModel:
with_sklearn_cart = bool(
int(os.getenv("DFATOOL_DTREE_SKLEARN_CART", "0"))
)
+ with_lmt = bool(int(os.getenv("DFATOOL_DTREE_LMT", "0")))
with_xgboost = bool(int(os.getenv("DFATOOL_USE_XGBOOST", "0")))
loss_ignore_scalar = bool(
int(os.getenv("DFATOOL_DTREE_LOSS_IGNORE_SCALAR", "0"))
@@ -347,6 +350,7 @@ class AnalyticModel:
with_function_leaves=with_function_leaves,
with_nonbinary_nodes=with_nonbinary_nodes,
with_sklearn_cart=with_sklearn_cart,
+ with_lmt=with_lmt,
with_xgboost=with_xgboost,
loss_ignore_scalar=loss_ignore_scalar,
)
@@ -427,6 +431,7 @@ class AnalyticModel:
with_function_leaves=False,
with_nonbinary_nodes=True,
with_sklearn_cart=False,
+ with_lmt=False,
with_xgboost=False,
loss_ignore_scalar=False,
):
@@ -450,6 +455,7 @@ class AnalyticModel:
with_function_leaves=with_function_leaves,
with_nonbinary_nodes=with_nonbinary_nodes,
with_sklearn_cart=with_sklearn_cart,
+ with_lmt=with_lmt,
with_xgboost=with_xgboost,
loss_ignore_scalar=loss_ignore_scalar,
threshold=threshold,
diff --git a/lib/parameters.py b/lib/parameters.py
index 4e98f54..51ff680 100644
--- a/lib/parameters.py
+++ b/lib/parameters.py
@@ -896,6 +896,7 @@ class ModelAttribute:
with_nonbinary_nodes=True,
with_sklearn_cart=False,
with_xgboost=False,
+ with_lmt=False,
loss_ignore_scalar=False,
threshold=100,
):
@@ -975,6 +976,26 @@ class ModelAttribute:
)
return
+ if with_lmt:
+ from sklearn.linear_model import LinearRegression
+ from dfatool.lineartree import LinearTreeRegressor
+
+ lmt = LinearTreeRegressor(base_estimator=LinearRegression())
+ fit_parameters, category_to_index, ignore_index = param_to_ndarray(
+ parameters, with_nan=False, categorial_to_scalar=categorial_to_scalar
+ )
+ if fit_parameters.shape[1] == 0:
+ logger.warning(
+ f"Cannot generate LMT due to lack of parameters: parameter shape is {np.array(parameters).shape}, fit_parameter shape is {fit_parameters.shape}"
+ )
+ self.model_function = df.StaticFunction(np.mean(data))
+ return
+ lmt.fit(fit_parameters, data)
+ self.model_function = df.LMTFunction(
+ np.mean(data), lmt, category_to_index, ignore_index
+ )
+ return
+
if loss_ignore_scalar and not with_function_leaves:
logger.warning(
"build_dtree called with loss_ignore_scalar=True, with_function_leaves=False. This does not make sense."