summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rwxr-xr-xlib/dfatool.py23
1 files changed, 21 insertions, 2 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 2b5d3f3..f0f71f1 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -970,6 +970,10 @@ class EnergyModel:
def param_dependence_ratio(self, state_or_trans, key, param):
return 1 - self.param_independence_ratio(state_or_trans, key, param)
+ # This heuristic is very similar to the "function is not much better than
+ # median" checks in get_fitted. So far, doing it here as well is mostly
+ # a performance and not an algorithm quality decision.
+ # --df, 2018-04-18
def depends_on_param(self, state_or_trans, key, param):
if self._use_corrcoef:
return self.param_dependence_ratio(state_or_trans, key, param) > 0.1
@@ -987,6 +991,7 @@ class EnergyModel:
def arg_dependence_ratio(self, state_or_trans, key, arg_index):
return 1 - self.arg_independence_ratio(state_or_trans, key, arg_index)
+ # See notes on depends_on_param
def depends_on_arg(self, state_or_trans, key, param):
if self._use_corrcoef:
return self.arg_dependence_ratio(state_or_trans, key, param) > 0.1
@@ -1091,7 +1096,8 @@ class EnergyModel:
vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
fit_result['mean_rmsd'], fit_result['median_rmsd']))
- elif fit_result['best_rmsd'] >= 0.5 * min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
+ # See notes on depends_on_param
+ elif fit_result['best_rmsd'] >= 0.8 * min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
fit_result['mean_rmsd'], fit_result['median_rmsd']))
@@ -1154,6 +1160,7 @@ class EnergyModel:
detailed_results = {}
model_energy_list = []
real_energy_list = []
+ model_rel_energy_list = []
model_duration_list = []
real_duration_list = []
model_timeout_list = []
@@ -1169,22 +1176,32 @@ class EnergyModel:
for rep_id in range(len(trace['trace'][0]['offline'])):
model_energy = 0.
real_energy = 0.
+ model_rel_energy = 0.
model_duration = 0.
real_duration = 0.
model_timeout = 0.
real_timeout = 0.
- for trace_part in trace['trace']:
+ for i, trace_part in enumerate(trace['trace']):
name = trace_part['name']
+ prev_name = trace['trace'][i-1]['name']
isa = trace_part['isa']
if name != 'UNINITIALIZED':
param = trace_part['offline_aggregates']['param'][rep_id]
+ prev_param = trace['trace'][i-1]['offline_aggregates']['param'][rep_id]
power = trace_part['offline'][rep_id]['uW_mean']
duration = trace_part['offline'][rep_id]['us']
+ prev_duration = trace['trace'][i-1]['offline'][rep_id]['us']
real_energy += power * duration
if isa == 'state':
model_energy += model_function(name, 'power', param=param) * duration
else:
model_energy += model_function(name, 'energy', param=param)
+ # If i == 1, the previous state was UNINITIALIZED, for which we do not have model data
+ if i == 1:
+ model_rel_energy += model_function(name, 'energy', param=param)
+ else:
+ model_rel_energy += model_function(prev_name, 'power', param=prev_param) * (prev_duration + duration)
+ model_rel_energy += model_function(name, 'rel_energy_prev', param=param)
real_duration += duration
model_duration += model_function(name, 'duration', param=param)
if 'plan' in trace_part and trace_part['plan']['level'] == 'epilogue':
@@ -1192,6 +1209,7 @@ class EnergyModel:
model_timeout += model_function(name, 'timeout', param=param)
real_energy_list.append(real_energy)
model_energy_list.append(model_energy)
+ model_rel_energy_list.append(model_rel_energy)
real_duration_list.append(real_duration)
model_duration_list.append(model_duration)
real_timeout_list.append(real_timeout)
@@ -1202,6 +1220,7 @@ class EnergyModel:
'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
+ 'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
}