summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rwxr-xr-xlib/dfatool.py57
1 files changed, 43 insertions, 14 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py
index 907612c..c5b58ee 100755
--- a/lib/dfatool.py
+++ b/lib/dfatool.py
@@ -174,7 +174,6 @@ def regression_measures(predicted, actual):
rsq -- R^2 measure, see sklearn.metrics.r2_score
count -- Number of values
"""
-
if type(predicted) != np.ndarray:
raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
if type(actual) != np.ndarray:
@@ -286,6 +285,23 @@ def _preprocess_measurement(measurement):
class ParamStats:
def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False):
+ """
+ Compute standard deviation and correlation coefficient on parameterized data partitions.
+
+ arguments:
+ by_name -- ground truth partitioned by state/transition name.
+ by_name[state_or_trans][attribute] must be a list or 1-D numpy array.
+ by_name[state_or_trans]['param'] must be a list of parameter values
+ corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the
+ first ground truth element has the (lexically) first parameter set to 1,
+ the second to 2 and the third to 3.
+ by_param -- ground truth partitioned by state/transition name and parameters.
+ by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array.
+ parameter_names -- list of parameter names, must have the same order as the parameter
+ values in by_param (lexical sorting is recommended).
+ arg_count -- dict providing the number of functions args ("local parameters") for each function.
+ use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection
+ """
self.stats = dict()
self.use_corrcoef = use_corrcoef
# Note: This is deliberately single-threaded. The overhead incurred
@@ -296,19 +312,25 @@ class ParamStats:
for attribute in by_name[state_or_tran]['attributes']:
self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute)
- def generic_param_independence_ratio(self, state_or_trans, attribute):
+ def _generic_param_independence_ratio(self, state_or_trans, attribute):
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
# not supported
- return 0
+ raise ValueError
if statistics['std_static'] == 0:
return 0
return statistics['std_param_lut'] / statistics['std_static']
def generic_param_dependence_ratio(self, state_or_trans, attribute):
- return 1 - self.generic_param_independence_ratio(state_or_trans, attribute)
+ """
+ Return the heuristi ratio of parameter dependence for state_or_trans and attribute.
- def param_independence_ratio(self, state_or_trans, attribute, param):
+ This is not supported if the correlation coefficient is used.
+ A value close to 0 means no influence, a value close to 1 means high probability of influence.
+ """
+ return 1 - self._generic_param_independence_ratio(state_or_trans, attribute)
+
+ def _param_independence_ratio(self, state_or_trans, attribute, param):
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
return 1 - np.abs(statistics['corr_by_param'][param])
@@ -317,9 +339,14 @@ class ParamStats:
return statistics['std_param_lut'] / statistics['std_by_param'][param]
def param_dependence_ratio(self, state_or_trans, attribute, param):
- return 1 - self.param_independence_ratio(state_or_trans, attribute, param)
+ """
+ Return the heuristic ratio of parameter dependence for state_or_trans, attribute, and param.
- def arg_independence_ratio(self, state_or_trans, attribute, arg_index):
+ A value close to 0 means no influence, a value close to 1 means high probability of influence.
+ """
+ return 1 - self._param_independence_ratio(state_or_trans, attribute, param)
+
+ def _arg_independence_ratio(self, state_or_trans, attribute, arg_index):
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
return 1 - np.abs(statistics['corr_by_arg'][arg_index])
@@ -328,24 +355,26 @@ class ParamStats:
return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index]
def arg_dependence_ratio(self, state_or_trans, attribute, arg_index):
- return 1 - self.arg_independence_ratio(state_or_trans, attribute, arg_index)
+ return 1 - self._arg_independence_ratio(state_or_trans, attribute, arg_index)
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
# --df, 2018-04-18
- def depends_on_param(self, state_or_trans, key, param):
+ def depends_on_param(self, state_or_trans, attribute, param):
+ """Return whether attribute of state_or_trans depens on param."""
if self.use_corrcoef:
- return self.param_dependence_ratio(state_or_trans, key, param) > 0.1
+ return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.1
else:
- return self.param_dependence_ratio(state_or_trans, key, param) > 0.5
+ return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.5
# See notes on depends_on_param
- def depends_on_arg(self, state_or_trans, key, param):
+ def depends_on_arg(self, state_or_trans, attribute, arg_index):
+ """Return whether attribute of state_or_trans depens on arg_index."""
if self.use_corrcoef:
- return self.arg_dependence_ratio(state_or_trans, key, param) > 0.1
+ return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.1
else:
- return self.arg_dependence_ratio(state_or_trans, key, param) > 0.5
+ return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.5
class RawData:
"""