diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/dfatool.py | 117 | ||||
-rw-r--r-- | lib/functions.py | 30 | ||||
-rw-r--r-- | lib/parameters.py | 21 | ||||
-rw-r--r-- | lib/utils.py | 10 |
4 files changed, 57 insertions, 121 deletions
diff --git a/lib/dfatool.py b/lib/dfatool.py index 0da8cc9..ef3bac7 100644 --- a/lib/dfatool.py +++ b/lib/dfatool.py @@ -3,6 +3,7 @@ import csv import io import json +import logging import numpy as np import os import re @@ -16,7 +17,6 @@ from .functions import analytic from .functions import AnalyticFunction from .parameters import ParamStats from .utils import ( - vprint, is_numeric, soft_cast_int, param_slice_eq, @@ -24,6 +24,8 @@ from .utils import ( ) from .utils import by_name_to_by_param, match_parameter_values, running_mean +logger = logging.getLogger(__name__) + try: from .pubcode import Code128 import zbar @@ -250,7 +252,7 @@ class CrossValidator: arguments: model_class -- model class/type used for model synthesis, e.g. PTAModel or AnalyticModel. model_class must have a - constructor accepting (by_name, parameters, arg_count, verbose = False) + constructor accepting (by_name, parameters, arg_count) and provide an `assess` method. by_name -- measurements aggregated by state/transition/function/... name. Layout: by_name[name][attribute] = list of data. Additionally, @@ -422,13 +424,9 @@ class CrossValidator: for idx in validation_subset: validation[name]["param"].append(self.by_name[name]["param"][idx]) - training_data = self.model_class( - training, self.parameters, self.arg_count, verbose=False - ) + training_data = self.model_class(training, self.parameters, self.arg_count) training_model = model_getter(training_data) - validation_data = self.model_class( - validation, self.parameters, self.arg_count, verbose=False - ) + validation_data = self.model_class(validation, self.parameters, self.arg_count) return validation_data.assess(training_model) @@ -573,14 +571,13 @@ class TimingData: self.traces_by_fileno.extend(log_data["traces"]) self._concatenate_analyzed_traces() - def get_preprocessed_data(self, verbose=True): + def get_preprocessed_data(self): """ Return a list of DFA traces annotated with timing and parameter data. Suitable for the PTAModel constructor. See PTAModel(...) docstring for format details. """ - self.verbose = verbose if self.preprocessed: return self.traces if self.version == 0: @@ -1133,7 +1130,7 @@ class RawData: trace["id"] = i return trace_output - def get_preprocessed_data(self, verbose=True): + def get_preprocessed_data(self): """ Return a list of DFA traces annotated with energy, timing, and parameter data. The list is cached on disk, unless the constructor was called with `with_traces` set. @@ -1186,7 +1183,6 @@ class RawData: * `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric * `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call """ - self.verbose = verbose if self.preprocessed: return self.traces if self.version == 0: @@ -1375,9 +1371,8 @@ class RawData: for measurement in measurements: if "energy_trace" not in measurement: - vprint( - self.verbose, - "[W] Skipping {ar:s}/{m:s}: {e:s}".format( + logging.warning( + "Skipping {ar:s}/{m:s}: {e:s}".format( ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e="; ".join(measurement["datasource_errors"]), @@ -1398,9 +1393,8 @@ class RawData: self._merge_online_and_offline(measurement) num_valid += 1 else: - vprint( - self.verbose, - "[W] Skipping {ar:s}/{m:s}: {e:s}".format( + logging.warning( + "Skipping {ar:s}/{m:s}: {e:s}".format( ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e=measurement["error"], @@ -1411,17 +1405,15 @@ class RawData: self._merge_online_and_etlog(measurement) num_valid += 1 else: - vprint( - self.verbose, - "[W] Skipping {ar:s}/{m:s}: {e:s}".format( + logging.warning( + "Skipping {ar:s}/{m:s}: {e:s}".format( ar=self.filenames[measurement["fileno"]], m=measurement["info"].name, e=measurement["error"], ), ) - vprint( - self.verbose, - "[I] {num_valid:d}/{num_total:d} measurements are valid".format( + logging.info( + "{num_valid:d}/{num_total:d} measurements are valid".format( num_valid=num_valid, num_total=len(measurements) ), ) @@ -1676,7 +1668,7 @@ def _num_args_from_by_name(by_name): return num_args -def get_fit_result(results, name, attribute, verbose=False, param_filter: dict = None): +def get_fit_result(results, name, attribute, param_filter: dict = None): """ Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'. @@ -1685,7 +1677,6 @@ def get_fit_result(results, name, attribute, verbose=False, param_filter: dict = :param results: fit results as returned by `paramfit.results` :param name: state/transition/... name, e.g. 'TX' :param attribute: model attribute, e.g. 'duration' - :param verbose: print debug message to stdout when deliberately not using a determined fit function :param param_filter: :returns: dict with fit result (see `_try_fits`) for each successfully fitted parameter. E.g. {'param 1': {'best' : 'function name', ...} } """ @@ -1701,31 +1692,29 @@ def get_fit_result(results, name, attribute, verbose=False, param_filter: dict = if this_result["best_rmsd"] >= min( this_result["mean_rmsd"], this_result["median_rmsd"] ): - vprint( - verbose, - "[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})".format( + logger.debug( + "Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})".format( name, attribute, result["key"][2], this_result["best_rmsd"], this_result["mean_rmsd"], this_result["median_rmsd"], - ), + ) ) # See notes on depends_on_param elif this_result["best_rmsd"] >= 0.8 * min( this_result["mean_rmsd"], this_result["median_rmsd"] ): - vprint( - verbose, - "[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ref ({:.0f}, {:.0f})".format( + logger.debug( + "Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ref ({:.0f}, {:.0f})".format( name, attribute, result["key"][2], this_result["best_rmsd"], this_result["mean_rmsd"], this_result["median_rmsd"], - ), + ) ) else: fit_result[result["key"][2]] = this_result @@ -1780,7 +1769,6 @@ class AnalyticModel: parameters, arg_count=None, function_override=dict(), - verbose=True, use_corrcoef=False, ): """ @@ -1817,7 +1805,6 @@ class AnalyticModel: there for the required format. Note that this happens regardless of parameter dependency detection: The provided analytic function will be assigned even if it seems like the model attribute is static / parameter-independent. - :param verbose: Print debug/info output while generating the model? :param use_corrcoef: use correlation coefficient instead of stddev comparison to detect whether a model attribute depends on a parameter """ self.cache = dict() @@ -1826,7 +1813,6 @@ class AnalyticModel: self.names = sorted(by_name.keys()) self.parameters = sorted(parameters) self.function_override = function_override.copy() - self.verbose = verbose self._use_corrcoef = use_corrcoef self._num_args = arg_count if self._num_args is None: @@ -1837,7 +1823,6 @@ class AnalyticModel: self.by_param, self.parameters, self._num_args, - verbose=verbose, use_corrcoef=use_corrcoef, ) @@ -1849,12 +1834,9 @@ class AnalyticModel: try: model[name][key] = model_function(elem[key]) except RuntimeWarning: - vprint(self.verbose, "[W] Got no data for {} {}".format(name, key)) + logging.warning("Got no data for {} {}".format(name, key)) except FloatingPointError as fpe: - vprint( - self.verbose, - "[W] Got no data for {} {}: {}".format(name, key, fpe), - ) + logging.warning("Got no data for {} {}: {}".format(name, key, fpe),) return model def param_index(self, param_name): @@ -1947,9 +1929,7 @@ class AnalyticModel: if name in self._num_args: num_args = self._num_args[name] for attribute in self.by_name[name]["attributes"]: - fit_result = get_fit_result( - paramfit.results, name, attribute, self.verbose - ) + fit_result = get_fit_result(paramfit.results, name, attribute) if (name, attribute) in self.function_override: function_str = self.function_override[(name, attribute)] @@ -2173,7 +2153,6 @@ class PTAModel: ignore_trace_indexes=[], discard_outliers=None, function_override={}, - verbose=True, use_corrcoef=False, pta=None, ): @@ -2202,7 +2181,6 @@ class PTAModel: there for the required format. Note that this happens regardless of parameter dependency detection: The provided analytic function will be assigned even if it seems like the model attribute is static / parameter-independent. - verbose -- print informative output, e.g. when removing an outlier use_corrcoef -- use correlation coefficient instead of stddev comparison to detect whether a model attribute depends on a parameter pta -- hardware model as `PTA` object @@ -2219,13 +2197,11 @@ class PTAModel: self._parameter_names, self._num_args, self._use_corrcoef, - verbose=verbose, ) self.cache = {} np.seterr("raise") self._outlier_threshold = discard_outliers self.function_override = function_override.copy() - self.verbose = verbose self.pta = pta self.ignore_trace_indexes = ignore_trace_indexes self._aggregate_to_ndarray(self.by_name) @@ -2254,12 +2230,9 @@ class PTAModel: try: model[name][key] = model_function(elem[key]) except RuntimeWarning: - vprint(self.verbose, "[W] Got no data for {} {}".format(name, key)) + logging.warning("Got no data for {} {}".format(name, key)) except FloatingPointError as fpe: - vprint( - self.verbose, - "[W] Got no data for {} {}: {}".format(name, key, fpe), - ) + logging.warning("Got no data for {} {}: {}".format(name, key, fpe),) return model def get_static(self, use_mean=False): @@ -2383,7 +2356,7 @@ class PTAModel: num_args = self._num_args[state_or_tran] for model_attribute in self.by_name[state_or_tran]["attributes"]: fit_results = get_fit_result( - paramfit.results, state_or_tran, model_attribute, self.verbose + paramfit.results, state_or_tran, model_attribute ) for parameter_name in self._parameter_names: @@ -2700,7 +2673,6 @@ class EnergyTraceLog: self.state_duration = state_duration * 1e-3 self.transition_names = transition_names self.with_traces = with_traces - self.verbose = False self.errors = list() # TODO auto-detect @@ -2758,8 +2730,7 @@ class EnergyTraceLog: self.sample_rate = data_count / (m_duration_us * 1e-6) - vprint( - self.verbose, + logging.debug( "got {} samples with {} seconds of log data ({} Hz)".format( data_count, m_duration_us * 1e-6, self.sample_rate ), @@ -2869,19 +2840,16 @@ class EnergyTraceLog: print('[!!!] did not find transition "{}"'.format(name)) break next_barcode = end + self.state_duration + duration - vprint( - self.verbose, + logging.debug( '{} barcode "{}" area: {:0.2f} .. {:0.2f} / {:0.2f} seconds'.format( offline_index, bc, start, stop, end ), ) if bc != name: - vprint( - self.verbose, + logging.debug( '[!!!] mismatch: expected "{}", got "{}"'.format(name, bc), ) - vprint( - self.verbose, + logging.debug( "{} estimated transition area: {:0.3f} .. {:0.3f} seconds".format( offline_index, end, end + duration ), @@ -2894,8 +2862,7 @@ class EnergyTraceLog: self.ts_to_index(end + duration + self.state_duration) + 1 ) - vprint( - self.verbose, + logging.debug( "{} estimated transitionindex: {:0.3f} .. {:0.3f} seconds".format( offline_index, transition_start_index / self.sample_rate, @@ -2995,8 +2962,7 @@ class EnergyTraceLog: + self.led_power / 3 ) - vprint( - self.verbose, + logging.debug( "looking for barcode starting at {:0.2f} s, threshold is {:0.1f} mW".format( start_ts, sync_threshold_power * 1e3 ), @@ -3030,8 +2996,7 @@ class EnergyTraceLog: barcode_data = self.interval_power[sync_area_start:sync_area_end] - vprint( - self.verbose, + logging.debug( "barcode search area: {:0.2f} .. {:0.2f} seconds ({} samples)".format( sync_start_ts, sync_end_ts, len(barcode_data) ), @@ -3109,7 +3074,7 @@ class EnergyTraceLog: return content, sym_start, sym_end, padding_bits else: - vprint(self.verbose, "unable to find barcode") + logging.warning("unable to find barcode") return None, None, None, None @@ -3129,17 +3094,15 @@ class MIMOSA: Resulting data is a list of state/transition/state/transition/... measurements. """ - def __init__(self, voltage: float, shunt: int, verbose=True, with_traces=False): + def __init__(self, voltage: float, shunt: int, with_traces=False): """ Initialize MIMOSA loader for a specific voltage and shunt setting. :param voltage: MIMOSA DUT supply voltage (V) :para mshunt: MIMOSA Shunt (Ohms) - :param verbose: print notices about invalid data on STDOUT? """ self.voltage = voltage self.shunt = shunt - self.verbose = verbose self.with_traces = with_traces self.r1 = 984 # "1k" self.r2 = 99013 # "100k" @@ -3337,7 +3300,7 @@ class MIMOSA: if cal_r2_mean > cal_0_mean: b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean) else: - vprint(self.verbose, "[W] 0 uA == %.f uA during calibration" % (ua_r2)) + logging.warning("0 uA == %.f uA during calibration" % (ua_r2)) b_lower = 0 b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean) @@ -3509,7 +3472,7 @@ class MIMOSA: data["substates"] = substates ssum = np.sum(list(map(lambda x: x["duration"], substates["states"]))) if ssum != data["us"]: - vprint(self.verbose, "ERR: duration %d vs %d" % (data["us"], ssum)) + logging.warning("duration %d vs %d" % (data["us"], ssum)) if isa == "transition": # subtract average power of previous state diff --git a/lib/functions.py b/lib/functions.py index 6d8daa4..359c8d7 100644 --- a/lib/functions.py +++ b/lib/functions.py @@ -5,12 +5,14 @@ This module provides classes and helper functions useful for least-squares regression and general handling of model functions. """ from itertools import chain, combinations +import logging import numpy as np import re from scipy import optimize -from .utils import is_numeric, vprint +from .utils import is_numeric arg_support_enabled = True +logger = logging.getLogger(__name__) def powerset(iterable): @@ -118,9 +120,7 @@ class AnalyticFunction: packet length. """ - def __init__( - self, function_str, parameters, num_args, verbose=True, regression_args=None - ): + def __init__(self, function_str, parameters, num_args, regression_args=None): """ Create a new AnalyticFunction object from a function string. @@ -135,7 +135,6 @@ class AnalyticFunction: :param num_args: number of local function arguments, if any. Set to 0 if the model attribute does not belong to a function or if function arguments are not included in the model. - :param verbose: complain about odd events :param regression_args: Initial regression variable values, both for function usage and least squares optimization. If unset, defaults to [1, 1, 1, ...] @@ -146,7 +145,6 @@ class AnalyticFunction: rawfunction = function_str self._dependson = [False] * (len(parameters) + num_args) self.fit_success = False - self.verbose = verbose if type(function_str) == str: num_vars_re = re.compile(r"regression_arg\(([0-9]+)\)") @@ -231,9 +229,8 @@ class AnalyticFunction: else: X[i].extend([np.nan] * len(val[model_attribute])) elif key[0] == state_or_tran and len(key[1]) != dimension: - vprint( - self.verbose, - "[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.".format( + logging.warning( + "Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.".format( state_or_tran, model_attribute, len(key[1]), dimension ), ) @@ -266,9 +263,8 @@ class AnalyticFunction: error_function, self._regression_args, args=(X, Y), xtol=2e-15 ) except ValueError as err: - vprint( - self.verbose, - "[W] Fit failed for {}/{}: {} (function: {})".format( + logging.warning( + "Fit failed for {}/{}: {} (function: {})".format( state_or_tran, model_attribute, err, self._model_str ), ) @@ -277,16 +273,14 @@ class AnalyticFunction: self._regression_args = res.x self.fit_success = True else: - vprint( - self.verbose, - "[W] Fit failed for {}/{}: {} (function: {})".format( + logging.warning( + "Fit failed for {}/{}: {} (function: {})".format( state_or_tran, model_attribute, res.message, self._model_str ), ) else: - vprint( - self.verbose, - "[W] Insufficient amount of valid parameter keys, cannot fit {}/{}".format( + logging.warning( + "Insufficient amount of valid parameter keys, cannot fit {}/{}".format( state_or_tran, model_attribute ), ) diff --git a/lib/parameters.py b/lib/parameters.py index 8b562b6..bd67cc1 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -1,4 +1,5 @@ import itertools +import logging import numpy as np from collections import OrderedDict from copy import deepcopy @@ -6,6 +7,8 @@ from multiprocessing import Pool from .utils import remove_index_from_tuple, is_numeric from .utils import filter_aggregate_by_param, by_name_to_by_param +logger = logging.getLogger(__name__) + def distinct_param_values(by_name, state_or_tran): """ @@ -94,9 +97,7 @@ def _codependent_parameters(param, lut_by_param_values, std_by_param_values): return influencer_parameters -def _std_by_param( - by_param, all_param_values, state_or_tran, attribute, param_index, verbose=False -): +def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index): u""" Calculate standard deviations for a static model where all parameters but `param_index` are constant. @@ -229,7 +230,6 @@ def _compute_param_statistics( attribute, distinct_values, distinct_values_by_param_index, - verbose=False, ): """ Compute standard deviation and correlation coefficient for various data partitions. @@ -252,7 +252,6 @@ def _compute_param_statistics( :param arg_count: dict providing the number of functions args ("local parameters") for each function. :param state_or_trans: state or transition name, e.g. 'send' or 'TX' :param attribute: model attribute, e.g. 'power' or 'duration' - :param verbose: print warning if some parameter partitions are too small for fitting :returns: a dict with the following content: std_static -- static parameter-unaware model error: stddev of by_name[state_or_trans][attribute] @@ -299,7 +298,6 @@ def _compute_param_statistics( state_or_trans, attribute, param_idx, - verbose, ) ret["std_by_param"][param] = mean_std ret["std_by_param_values"][param] = std_matrix @@ -351,7 +349,6 @@ def _compute_param_statistics( state_or_trans, attribute, param_idx, - verbose, ) ret["param_data"][param]["depends_for_codependent_value"][ combi @@ -365,7 +362,6 @@ def _compute_param_statistics( state_or_trans, attribute, len(parameter_names) + arg_index, - verbose, ) ret["std_by_arg"].append(mean_std) ret["std_by_arg_values"].append(std_matrix) @@ -495,13 +491,7 @@ class ParamStats: """ def __init__( - self, - by_name, - by_param, - parameter_names, - arg_count, - use_corrcoef=False, - verbose=False, + self, by_name, by_param, parameter_names, arg_count, use_corrcoef=False, ): """ Compute standard deviation and correlation coefficient on parameterized data partitions. @@ -556,7 +546,6 @@ class ParamStats: attribute, self.distinct_values[state_or_tran], self.distinct_values_by_param_index[state_or_tran], - verbose, ], } ) diff --git a/lib/utils.py b/lib/utils.py index 91dded0..8186ee7 100644 --- a/lib/utils.py +++ b/lib/utils.py @@ -4,16 +4,6 @@ import re arg_support_enabled = True -def vprint(verbose, string): - """ - Print `string` if `verbose`. - - Prints string if verbose is a True value - """ - if verbose: - print(string) - - def running_mean(x: np.ndarray, N: int) -> np.ndarray: """ Compute `N` elements wide running average over `x`. |