summaryrefslogtreecommitdiff
path: root/lib
diff options
context:
space:
mode:
Diffstat (limited to 'lib')
-rw-r--r--lib/loader/__init__.py106
-rw-r--r--lib/loader/dlog.py293
-rw-r--r--lib/loader/energytrace.py17
3 files changed, 386 insertions, 30 deletions
diff --git a/lib/loader/__init__.py b/lib/loader/__init__.py
index f0e176d..4ac91b8 100644
--- a/lib/loader/__init__.py
+++ b/lib/loader/__init__.py
@@ -19,6 +19,7 @@ from .energytrace import (
EnergyTraceWithLogicAnalyzer,
EnergyTraceWithTimer,
)
+from .dlog import DLog
from .keysight import KeysightCSV
from .mimosa import MIMOSA
@@ -116,6 +117,37 @@ def _preprocess_etlog(measurement):
return processed_data
+def _preprocess_dlog(measurement):
+ setup = measurement["setup"]
+ dlog = DLog(
+ float(setup["voltage"]),
+ int(setup["state_duration"]),
+ with_traces=measurement["with_traces"],
+ )
+
+ states_and_transitions = list()
+ try:
+ dlog.load_data(measurement["content"])
+ states_and_transitions = dlog.analyze_states(
+ measurement["expected_trace"], measurement["repeat_id"]
+ )
+ except EOFError as e:
+ dlog.errors.append("DLog file error: {}".format(e))
+ except RuntimeError as e:
+ dlog.errors.append("DLog loader error: {}".format(e))
+
+ processed_data = {
+ "fileno": measurement["fileno"],
+ "repeat_id": measurement["repeat_id"],
+ "info": measurement["info"],
+ "energy_trace": states_and_transitions,
+ "valid": len(dlog.errors) == 0,
+ "errors": dlog.errors,
+ }
+
+ return processed_data
+
+
class TimingData:
"""
Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.
@@ -330,11 +362,13 @@ class RawData:
for member in tf.getmembers():
if member.name == "ptalog.json" and self.version == 0:
self.version = 1
- # might also be version 2
- # depends on whether *.etlog exists or not
+ # or greater, if *.etlog / *.dlog exist
elif ".etlog" in member.name:
self.version = 2
break
+ elif ".dlog" in member.name:
+ self.version = 3
+ break
if self.version >= 1:
self.ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
self.pta = self.ptalog["pta"]
@@ -390,7 +424,7 @@ class RawData:
"ptalog": self.ptalog,
"setup_by_fileno": self.setup_by_fileno,
}
- json.dump(cache_data, f)
+ json.dump(cache_data, f, cls=NpEncoder)
def to_dref(self) -> dict:
return {
@@ -475,15 +509,15 @@ class RawData:
"""
if self.preprocessed:
return self.traces
- if self.version <= 2:
- self._preprocess_012(self.version)
+ if self.version <= 3:
+ self._preprocess(self.version)
else:
raise ValueError(f"Unsupported raw data version: {self.version}")
self.preprocessed = True
self.save_cache()
return self.traces
- def _preprocess_012(self, version):
+ def _preprocess(self, version):
"""Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
offline_data = []
for i, filename in enumerate(self.input_filenames):
@@ -677,6 +711,55 @@ class RawData:
# will not linger in 'offline_aggregates' and confuse the hell
# out of other code paths
+ elif self.version == 3:
+ with tarfile.open(filename) as tf:
+ ptalog = json.load(tf.extractfile(tf.getmember("ptalog.json")))
+ # generate-dfa-benchmark uses TimingHarness to obtain timing data.
+ # Data is placed in 'offline_aggregates', which is also
+ # where we are going to store power/energy data.
+ # In case of invalid measurements, this can lead to a
+ # mismatch between duration and power/energy data, e.g.
+ # where duration = [A, B, C], power = [a, b], B belonging
+ # to an invalid measurement and thus power[b] corresponding
+ # to duration[C]. At the moment, this is harmless, but in the
+ # future it might not be.
+ if "offline_aggregates" in ptalog["traces"][0][0]["trace"][0]:
+ for trace_group in ptalog["traces"]:
+ for trace in trace_group:
+ for state_or_transition in trace["trace"]:
+ offline_aggregates = state_or_transition.pop(
+ "offline_aggregates", None
+ )
+ if offline_aggregates:
+ state_or_transition[
+ "online_aggregates"
+ ] = offline_aggregates
+ for j, traces in enumerate(ptalog["traces"]):
+ self.filenames.append("{}#{}".format(filename, j))
+ self.traces_by_fileno.append(traces)
+ self.setup_by_fileno.append(
+ {
+ "voltage": ptalog["configs"][j]["voltage"],
+ "state_duration": ptalog["opt"]["sleep"],
+ }
+ )
+ for repeat_id, dlog_file in enumerate(ptalog["files"][j]):
+ member = tf.getmember(dlog_file)
+ offline_data.append(
+ {
+ "content": tf.extractfile(member).read(),
+ "fileno": len(self.traces_by_fileno) - 1,
+ # For debug output and warnings
+ "info": member,
+ "setup": self.setup_by_fileno[-1],
+ # needed to add runtime "return_value.apply_from" parameters to offline_aggregates
+ "repeat_id": repeat_id,
+ # only for validation
+ "expected_trace": traces,
+ "with_traces": self.with_traces,
+ }
+ )
+
if self.version == 0 and len(self.input_filenames) > 1:
for entry in offline_data:
assert_legacy_compatibility(
@@ -691,6 +774,8 @@ class RawData:
measurements = pool.map(_preprocess_mimosa, offline_data)
elif self.version == 2:
measurements = pool.map(_preprocess_etlog, offline_data)
+ elif self.version == 3:
+ measurements = pool.map(_preprocess_dlog, offline_data)
num_valid = 0
for measurement in measurements:
@@ -721,7 +806,7 @@ class RawData:
e="; ".join(measurement["errors"]),
)
)
- elif version == 2:
+ elif version == 2 or version == 3:
if measurement["valid"]:
try:
EnergyTrace.add_offline_aggregates(
@@ -747,12 +832,7 @@ class RawData:
num_valid=num_valid, num_total=len(measurements)
)
)
- if version == 0:
- self.traces = self._concatenate_traces(self.traces_by_fileno)
- elif version == 1:
- self.traces = self._concatenate_traces(self.traces_by_fileno)
- elif version == 2:
- self.traces = self._concatenate_traces(self.traces_by_fileno)
+ self.traces = self._concatenate_traces(self.traces_by_fileno)
self.preprocessing_stats = {
"num_runs": len(measurements),
"num_valid": num_valid,
diff --git a/lib/loader/dlog.py b/lib/loader/dlog.py
new file mode 100644
index 0000000..b87a6bb
--- /dev/null
+++ b/lib/loader/dlog.py
@@ -0,0 +1,293 @@
+#!/usr/bin/env python3
+
+import io
+import numpy as np
+import struct
+import xml.etree.ElementTree as ET
+
+from bisect import bisect_right
+
+
+class DLogChannel:
+ def __init__(self, desc_tuple):
+ self.slot = desc_tuple[0]
+ self.smu = desc_tuple[1]
+ self.unit = desc_tuple[2]
+ self.data = None
+
+ def __repr__(self):
+ return f"""<DLogChannel(slot={self.slot}, smu="{self.smu}", unit="{self.unit}", data={self.data})>"""
+
+
+class DLog:
+ def __init__(
+ self,
+ voltage: float,
+ state_duration: int,
+ with_traces=False,
+ skip_duration=None,
+ limit_duration=None,
+ ):
+ self.voltage = voltage
+ self.state_duration = state_duration
+ self.with_traces = with_traces
+ self.skip_duration = skip_duration
+ self.limit_duration = limit_duration
+ self.errors = list()
+
+ self.sync_min_duration = 0.7
+ # TODO auto-detect
+ self.sync_power = 10e-3
+
+ def load_data(self, content):
+ lines = []
+ line = ""
+ with io.BytesIO(content) as f:
+ while line != "</dlog>\n":
+ line = f.readline().decode()
+ lines.append(line)
+ xml_header = "".join(lines)
+ raw_header = f.read(8)
+ data_offset = f.tell()
+ raw_data = f.read()
+
+ xml_header = xml_header.replace("1ua>", "X1ua>")
+ xml_header = xml_header.replace("2ua>", "X2ua>")
+ dlog = ET.fromstring(xml_header)
+ channels = []
+
+ for channel in dlog.findall("channel"):
+ channel_id = int(channel.get("id"))
+ sense_curr = channel.find("sense_curr").text
+ sense_volt = channel.find("sense_volt").text
+ model = channel.find("ident").find("model").text
+ if sense_volt == "1":
+ channels.append((channel_id, model, "V"))
+ if sense_curr == "1":
+ channels.append((channel_id, model, "A"))
+
+ num_channels = len(channels)
+
+ self.channels = list(map(DLogChannel, channels))
+ self.interval = float(dlog.find("frame").find("tint").text)
+ self.sense_minmax = int(dlog.find("frame").find("sense_minmax").text)
+ self.planned_duration = int(dlog.find("frame").find("time").text)
+ self.observed_duration = self.interval * int(len(raw_data) / (4 * num_channels))
+
+ if self.sense_minmax:
+ raise RuntimeError(
+ "DLog files with 'Log Min/Max' enabled are not supported yet"
+ )
+
+ self.timestamps = np.linspace(
+ 0, self.observed_duration, num=int(len(raw_data) / (4 * num_channels))
+ )
+
+ if (
+ self.skip_duration is not None
+ and self.observed_duration >= self.skip_duration
+ ):
+ start_offset = 0
+ for i, ts in enumerate(self.timestamps):
+ if ts >= self.skip_duration:
+ start_offset = i
+ break
+ self.timestamps = self.timestamps[start_offset:]
+ raw_data = raw_data[start_offset * 4 * num_channels :]
+
+ if (
+ self.limit_duration is not None
+ and self.observed_duration > self.limit_duration
+ ):
+ stop_offset = len(self.timestamps) - 1
+ for i, ts in enumerate(self.timestamps):
+ if ts > self.limit_duration:
+ stop_offset = i
+ break
+ self.timestamps = self.timestamps[:stop_offset]
+ self.observed_duration = self.timestamps[-1]
+ raw_data = raw_data[: stop_offset * 4 * num_channels]
+
+ self.data = np.ndarray(
+ shape=(num_channels, int(len(raw_data) / (4 * num_channels))),
+ dtype=np.float32,
+ )
+
+ iterator = struct.iter_unpack(">f", raw_data)
+ channel_offset = 0
+ measurement_offset = 0
+ for value in iterator:
+ if value[0] < -1e6 or value[0] > 1e6:
+ print(
+ f"Invalid data value {value[0]} at channel {channel_offset}, measurement {measurement_offset}. Replacing with 0."
+ )
+ self.data[channel_offset, measurement_offset] = 0
+ else:
+ self.data[channel_offset, measurement_offset] = value[0]
+ if channel_offset + 1 == num_channels:
+ channel_offset = 0
+ measurement_offset += 1
+ else:
+ channel_offset += 1
+
+ # An SMU has four slots
+ self.slots = [dict(), dict(), dict(), dict()]
+
+ for i, channel in enumerate(self.channels):
+ channel.data = self.data[i]
+ self.slots[channel.slot - 1][channel.unit] = channel
+
+ assert "A" in self.slots[0]
+ self.data = self.slots[0]["A"].data
+
+ def observed_duration_equals_expectation(self):
+ return int(self.observed_duration) == self.planned_duration
+
+ # very similar to DataProcessor.getStatesdfatool
+ def analyze_states(self, expected_trace, repeat_id):
+ sync_start = None
+ sync_timestamps = list()
+ above_count = 0
+ below_count = 0
+ for i, timestamp in enumerate(self.timestamps):
+ power = self.voltage * self.data[i]
+ if power > self.sync_power:
+ above_count += 1
+ below_count = 0
+ else:
+ above_count = 0
+ below_count += 1
+
+ if above_count > 2 and sync_start is None:
+ sync_start = timestamp
+ elif below_count > 2 and sync_start is not None:
+ if timestamp - sync_start > self.sync_min_duration:
+ sync_end = timestamp
+ sync_timestamps.append((sync_start, sync_end))
+ sync_start = None
+ print(sync_timestamps)
+
+ if len(sync_timestamps) != 3:
+ self.errors.append(
+ f"Found {len(sync_timestamps)} synchronization pulses, expected three."
+ )
+ self.errors.append(f"Synchronization pulses == {sync_timestamps}")
+ return list()
+
+ start_ts = sync_timestamps[0][1]
+ end_ts = sync_timestamps[1][0]
+
+ # start and end of first state
+ online_timestamps = [0, expected_trace[0]["start_offset"][repeat_id]]
+
+ # remaining events from the end of the first transition (start of second state) to the end of the last observed state
+ for trace in expected_trace:
+ for word in trace["trace"]:
+ online_timestamps.append(
+ online_timestamps[-1]
+ + word["online_aggregates"]["duration"][repeat_id]
+ )
+
+ online_timestamps = np.array(online_timestamps) * 1e-6
+ online_timestamps = (
+ online_timestamps * ((end_ts - start_ts) / online_timestamps[-1]) + start_ts
+ )
+
+ trigger_edges = list()
+ for ts in online_timestamps:
+ trigger_edges.append(bisect_right(self.timestamps, ts))
+
+ energy_trace = list()
+
+ for i in range(2, len(online_timestamps), 2):
+ prev_state_start_index = trigger_edges[i - 2]
+ prev_state_stop_index = trigger_edges[i - 1]
+ transition_start_index = trigger_edges[i - 1]
+ transition_stop_index = trigger_edges[i]
+ state_start_index = trigger_edges[i]
+ state_stop_index = trigger_edges[i + 1]
+
+ # If a transition takes less time than the measurement interval, its start and stop index may be the same.
+ # In this case, self.data[transition_start_index] is the only data point affected by the transition.
+ # We use the self.data slice [transition_start_index, transition_stop_index) to determine the mean power, so we need
+ # to increment transition_stop_index by 1 to end at self.data[transition_start_index]
+ # (self.data[transition_start_index : transition_start_index+1 ] == [self.data[transition_start_index])
+ if transition_stop_index == transition_start_index:
+ transition_stop_index += 1
+
+ prev_state_duration = online_timestamps[i + 1] - online_timestamps[i]
+ transition_duration = online_timestamps[i] - online_timestamps[i - 1]
+ state_duration = online_timestamps[i + 1] - online_timestamps[i]
+
+ # some states are followed by a UART dump of log data. This causes an increase in CPU energy
+ # consumption and is not part of the peripheral behaviour, so it should not be part of the benchmark results.
+ # If a case is followed by a UART dump, its duration is longer than the sleep duration between two transitions.
+ # In this case, we re-calculate the stop index, and calculate the state duration from coarse energytrace data
+ # instead of high-precision sync data
+ if (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ > self.state_duration
+ ):
+ prev_state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[prev_state_start_index] + self.state_duration,
+ )
+ prev_state_duration = (
+ self.timestamps[prev_state_stop_index]
+ - self.timestamps[prev_state_start_index]
+ )
+
+ if (
+ self.timestamps[state_stop_index] - self.timestamps[state_start_index]
+ > self.state_duration
+ ):
+ state_stop_index = bisect_right(
+ self.timestamps,
+ self.timestamps[state_start_index] + self.state_duration,
+ )
+ state_duration = (
+ self.timestamps[state_stop_index]
+ - self.timestamps[state_start_index]
+ )
+
+ prev_state_power = self.data[prev_state_start_index:prev_state_stop_index]
+
+ transition_timestamps = self.timestamps[
+ transition_start_index:transition_stop_index
+ ]
+ transition_power = self.data[transition_start_index:transition_stop_index]
+
+ state_timestamps = self.timestamps[state_start_index:state_stop_index]
+ state_power = self.data[state_start_index:state_stop_index]
+
+ transition = {
+ "isa": "transition",
+ "W_mean": np.mean(transition_power),
+ "W_std": np.std(transition_power),
+ "s": transition_duration,
+ }
+ if self.with_traces:
+ transition["plot"] = (
+ transition_timestamps - transition_timestamps[0],
+ transition_power,
+ )
+
+ state = {
+ "isa": "state",
+ "W_mean": np.mean(state_power),
+ "W_std": np.std(state_power),
+ "s": state_duration,
+ }
+ if self.with_traces:
+ state["plot"] = (state_timestamps - state_timestamps[0], state_power)
+
+ transition["W_mean_delta_prev"] = transition["W_mean"] - np.mean(
+ prev_state_power
+ )
+ transition["W_mean_delta_next"] = transition["W_mean"] - state["W_mean"]
+
+ energy_trace.append(transition)
+ energy_trace.append(state)
+
+ return energy_trace
diff --git a/lib/loader/energytrace.py b/lib/loader/energytrace.py
index 8fc2d0e..103a4d6 100644
--- a/lib/loader/energytrace.py
+++ b/lib/loader/energytrace.py
@@ -721,21 +721,6 @@ class EnergyTraceWithLogicAnalyzer:
energy_trace = list()
expected_transitions = list()
- # Print for debug purposes
- # for number, name in enumerate(names):
- # if "P15_8MW" in name:
- # print(name, energy_trace_new[number]["W_mean"])
-
- # st = ""
- # for i, x in enumerate(energy_trace_new[-10:]):
- # #st += "(%s|%s|%s)" % (energy_trace[i-10]["name"],x['W_mean'],x['s'])
- # st += "(%s|%s|%s)\n" % (energy_trace[i-10]["s"], x['s'], x['W_mean'])
-
- # print(st, "\n_______________________")
- # print(len(self.sync_data.timestamps), " - ", len(energy_trace_new), " - ", len(energy_trace), " - ", ",".join([str(x["s"]) for x in energy_trace_new[-6:]]), " - ", ",".join([str(x["s"]) for x in energy_trace[-6:]]))
- # if len(energy_trace_new) < len(energy_trace):
- # return None
-
return energy_trace_new
@@ -796,8 +781,6 @@ class EnergyTraceWithTimer(EnergyTraceWithLogicAnalyzer):
)
return list()
- # print(timestamps)
-
# Stop "Synchronization pulses". The first one has already started.
timestamps.extend(np.array([10, 1e6, 1e6 + 10]) + timestamps[-1])
timestamps.extend(np.array([0, 10, 1e6, 1e6 + 10]) + 250e3 + timestamps[-1])