diff options
Diffstat (limited to 'lib')
-rw-r--r-- | lib/model.py | 25 | ||||
-rw-r--r-- | lib/parameters.py | 188 |
2 files changed, 0 insertions, 213 deletions
diff --git a/lib/model.py b/lib/model.py index d83c12c..e908af4 100644 --- a/lib/model.py +++ b/lib/model.py @@ -866,19 +866,6 @@ class PTAModel: parameter_name, safe_functions_enabled, ) - for ( - codependent_param_dict - ) in self.stats.codependent_parameter_value_dicts( - state_or_tran, model_attribute, parameter_name - ): - paramfit.enqueue( - state_or_tran, - model_attribute, - parameter_index, - parameter_name, - safe_functions_enabled, - codependent_param_dict, - ) if ( arg_support_enabled and self.by_name[state_or_tran]["isa"] == "transition" @@ -906,18 +893,6 @@ class PTAModel: for model_attribute in self.by_name[state_or_tran]["attributes"]: fit_results = paramfit.get_result(state_or_tran, model_attribute) - for parameter_name in self._parameter_names: - if self.depends_on_param( - state_or_tran, model_attribute, parameter_name - ): - for ( - codependent_param_dict - ) in self.stats.codependent_parameter_value_dicts( - state_or_tran, model_attribute, parameter_name - ): - pass - # FIXME paramfit.get_result hat ja gar keinen Parameter als Argument... - if (state_or_tran, model_attribute) in self.function_override: function_str = self.function_override[ (state_or_tran, model_attribute) diff --git a/lib/parameters.py b/lib/parameters.py index 79543a6..81649f2 100644 --- a/lib/parameters.py +++ b/lib/parameters.py @@ -82,22 +82,6 @@ def _reduce_param_matrix(matrix: np.ndarray, parameter_names: list) -> list: return list() -def _codependent_parameters(param, lut_by_param_values, std_by_param_values): - """ - Return list of parameters which affect whether a parameter affects a model attribute or not. - """ - return list() - safe_div = np.vectorize(lambda x, y: 0.0 if x == 0 else 1 - x / y) - ratio_by_value = safe_div(lut_by_param_values, std_by_param_values) - err_mode = np.seterr("ignore") - dep_by_value = ratio_by_value > 0.5 - np.seterr(**err_mode) - - other_param_list = list(filter(lambda x: x != param, self._parameter_names)) - influencer_parameters = _reduce_param_matrix(dep_by_value, other_param_list) - return influencer_parameters - - def _std_by_param(by_param, all_param_values, state_or_tran, attribute, param_index): u""" Calculate standard deviations for a static model where all parameters but `param_index` are constant. @@ -312,48 +296,6 @@ def _compute_param_statistics( ret["std_param_lut"], ) - if ret["depends_on_param"][param]: - ret["param_data"][param] = { - "codependent_parameters": _codependent_parameters( - param, lut_matrix, std_matrix - ), - "depends_for_codependent_value": dict(), - } - - # calculate parameter dependence for individual values of codependent parameters - codependent_param_values = list() - for codependent_param in ret["param_data"][param]["codependent_parameters"]: - codependent_param_values.append(distinct_values[codependent_param]) - for combi in itertools.product(*codependent_param_values): - by_name_part = deepcopy(by_name) - filter_list = list( - zip(ret["param_data"][param]["codependent_parameters"], combi) - ) - filter_aggregate_by_param(by_name_part, parameter_names, filter_list) - by_param_part = by_name_to_by_param(by_name_part) - # there may be no data for this specific parameter value combination - if state_or_trans in by_name_part: - part_corr = _corr_by_param( - by_name_part, state_or_trans, attribute, param_idx - ) - part_std_lut = np.mean( - [ - np.std(by_param_part[x][attribute]) - for x in by_param_part.keys() - if x[0] == state_or_trans - ] - ) - _, part_std_param, _ = _std_by_param( - by_param_part, - distinct_values_by_param_index, - state_or_trans, - attribute, - param_idx, - ) - ret["param_data"][param]["depends_for_codependent_value"][ - combi - ] = _depends_on_param(part_corr, part_std_param, part_std_lut) - if state_or_trans in arg_count: for arg_index in range(arg_count[state_or_trans]): std_matrix, mean_std, lut_matrix = _std_by_param( @@ -596,136 +538,6 @@ class ParamStats: return True return False - def static_submodel_params(self, state_or_tran, attribute): - """ - Return the union of all parameter values which decide whether another parameter influences the model or not. - - I.e., the returned list of dicts contains one entry for each parameter value combination which (probably) does not have any parameter influencing the model. - If the current parameters matches one of these, a static sub-model built based on this subset of parameters can likely be used. - """ - # TODO - pass - - def has_codependent_parameters( - self, state_or_tran: str, attribute: str, param: str - ) -> bool: - """ - Return whether there are parameters which determine whether `param` influences `state_or_tran` `attribute` or not. - - :param state_or_tran: model state or transition - :param attribute: model attribute - :param param: parameter name - """ - if len(self.codependent_parameters(state_or_tran, attribute, param)): - return True - return False - - def codependent_parameters( - self, state_or_tran: str, attribute: str, param: str - ) -> list: - """ - Return list of parameters which determine whether `param` influences `state_or_tran` `attribute` or not. - - :param state_or_tran: model state or transition - :param attribute: model attribute - :param param: parameter name - """ - if self.stats[state_or_tran][attribute]["depends_on_param"][param]: - return self.stats[state_or_tran][attribute]["param_data"][param][ - "codependent_parameters" - ] - return list() - - def has_codependent_parameters_union( - self, state_or_tran: str, attribute: str - ) -> bool: - """ - Return whether there is a subset of parameters which decides whether `state_or_tran` `attribute` is static or parameter-dependent - - :param state_or_tran: model state or transition - :param attribute: model attribute - """ - depends_on_a_parameter = False - for param in self._parameter_names: - if self.stats[state_or_tran][attribute]["depends_on_param"][param]: - logger.debug( - "{}/{} depends on {}".format(state_or_tran, attribute, param) - ) - depends_on_a_parameter = True - if ( - len(self.codependent_parameters(state_or_tran, attribute, param)) - == 0 - ): - logger.debug("... and has no codependent parameters") - # Always depends on this parameter, regardless of other parameters' values - return False - return depends_on_a_parameter - - def codependent_parameters_union(self, state_or_tran: str, attribute: str) -> list: - """ - Return list of parameters which determine whether any parameter influences `state_or_tran` `attribute`. - - :param state_or_tran: model state or transition - :param attribute: model attribute - """ - codependent_parameters = set() - for param in self._parameter_names: - if self.stats[state_or_tran][attribute]["depends_on_param"][param]: - if ( - len(self.codependent_parameters(state_or_tran, attribute, param)) - == 0 - ): - return list(self._parameter_names) - for codependent_param in self.codependent_parameters( - state_or_tran, attribute, param - ): - codependent_parameters.add(codependent_param) - return sorted(codependent_parameters) - - def codependence_by_codependent_param_values( - self, state_or_tran: str, attribute: str, param: str - ) -> dict: - """ - Return dict mapping codependent parameter values to a boolean indicating whether `param` influences `state_or_tran` `attribute`. - - If a dict value is true, `attribute` depends on `param` for the corresponding codependent parameter values, otherwise it does not. - - :param state_or_tran: model state or transition - :param attribute: model attribute - :param param: parameter name - """ - if self.stats[state_or_tran][attribute]["depends_on_param"][param]: - return self.stats[state_or_tran][attribute]["param_data"][param][ - "depends_for_codependent_value" - ] - return dict() - - def codependent_parameter_value_dicts( - self, state_or_tran: str, attribute: str, param: str, kind="dynamic" - ): - """ - Return dicts of codependent parameter key-value mappings for which `param` influences (or does not influence) `state_or_tran` `attribute`. - - :param state_or_tran: model state or transition - :param attribute: model attribute - :param param: parameter name: - :param kind: 'static' or 'dynamic'. If 'dynamic' (the default), returns codependent parameter values for which `param` influences `attribute`. If 'static', returns codependent parameter values for which `param` does not influence `attribute` - """ - codependent_parameters = self.stats[state_or_tran][attribute]["param_data"][ - param - ]["codependent_parameters"] - codependence_info = self.stats[state_or_tran][attribute]["param_data"][param][ - "depends_for_codependent_value" - ] - if len(codependent_parameters) == 0: - return - else: - for param_values, is_dynamic in codependence_info.items(): - if (is_dynamic and kind == "dynamic") or ( - not is_dynamic and kind == "static" - ): - yield dict(zip(codependent_parameters, param_values)) - def _generic_param_independence_ratio(self, state_or_trans, attribute): """ Return the heuristic ratio of parameter independence for state_or_trans and attribute. |