diff options
Diffstat (limited to 'test/test_ptamodel.py')
-rwxr-xr-x | test/test_ptamodel.py | 1003 |
1 files changed, 799 insertions, 204 deletions
diff --git a/test/test_ptamodel.py b/test/test_ptamodel.py index 7d501e6..e8905b1 100755 --- a/test/test_ptamodel.py +++ b/test/test_ptamodel.py @@ -1,248 +1,843 @@ #!/usr/bin/env python3 -from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate +from dfatool.loader import RawData, pta_trace_to_aggregate +from dfatool.model import PTAModel +from dfatool.utils import by_name_to_by_param +from dfatool.validation import CrossValidator import os import unittest import pytest +import numpy as np -class TestModels(unittest.TestCase): - def test_model_singlefile_rf24(self): - raw_data = RawData(['test-data/20170220_164723_RF24_int_A.tar']) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + +class TestSynthetic(unittest.TestCase): + def test_model_validation(self): + # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17 + np.random.seed(1312) + X = np.arange(500) % 50 + parameter_names = ["p_mod5", "p_linear"] + + s1_duration_base = 70 + s1_duration_scale = 2 + s1_power_base = 50 + s1_power_scale = 7 + s2_duration_base = 700 + s2_duration_scale = 1 + s2_power_base = 1500 + s2_power_scale = 10 + + by_name = { + "raw_state_1": { + "isa": "state", + "param": [(x % 5, x) for x in X], + "duration": s1_duration_base + + np.random.normal(size=X.size, scale=s1_duration_scale), + "power": s1_power_base + + X + + np.random.normal(size=X.size, scale=s1_power_scale), + "attributes": ["duration", "power"], + }, + "raw_state_2": { + "isa": "state", + "param": [(x % 5, x) for x in X], + "duration": s2_duration_base + - 2 * X + + np.random.normal(size=X.size, scale=s2_duration_scale), + "power": s2_power_base + + X + + np.random.normal(size=X.size, scale=s2_power_scale), + "attributes": ["duration", "power"], + }, + } + by_param = by_name_to_by_param(by_name) + model = PTAModel(by_name, parameter_names, dict()) + static_model = model.get_static() + + # x ∈ [0, 50] -> mean(X) is 25 + self.assertAlmostEqual( + static_model("raw_state_1", "duration"), s1_duration_base, places=0 + ) + self.assertAlmostEqual( + static_model("raw_state_1", "power"), s1_power_base + 25, delta=7 + ) + self.assertAlmostEqual( + static_model("raw_state_2", "duration"), s2_duration_base - 2 * 25, delta=2 + ) + self.assertAlmostEqual( + static_model("raw_state_2", "power"), s2_power_base + 25, delta=7 + ) + + param_model, param_info = model.get_fitted() + + self.assertAlmostEqual( + param_model("raw_state_1", "duration", param=[0, 10]), + s1_duration_base, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_1", "duration", param=[0, 50]), + s1_duration_base, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_1", "duration", param=[0, 70]), + s1_duration_base, + places=0, + ) + + self.assertAlmostEqual( + param_model("raw_state_1", "power", param=[0, 10]), + s1_power_base + 10, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_1", "power", param=[0, 50]), + s1_power_base + 50, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_1", "power", param=[0, 70]), + s1_power_base + 70, + places=0, + ) + + self.assertAlmostEqual( + param_model("raw_state_2", "duration", param=[0, 10]), + s2_duration_base - 2 * 10, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_2", "duration", param=[0, 50]), + s2_duration_base - 2 * 50, + places=0, + ) + self.assertAlmostEqual( + param_model("raw_state_2", "duration", param=[0, 70]), + s2_duration_base - 2 * 70, + places=0, + ) + + self.assertAlmostEqual( + param_model("raw_state_2", "power", param=[0, 10]), + s2_power_base + 10, + delta=50, + ) + self.assertAlmostEqual( + param_model("raw_state_2", "power", param=[0, 50]), + s2_power_base + 50, + delta=50, + ) + self.assertAlmostEqual( + param_model("raw_state_2", "power", param=[0, 70]), + s2_power_base + 70, + delta=50, + ) + + static_quality = model.assess(static_model) + param_quality = model.assess(param_model) + + # static quality reflects normal distribution scale for non-parameterized data + + # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution + # Low Mean Absolute Error (< 2) + self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2) + # Low Root Mean Square Deviation (< scale == 2) + self.assertTrue( + static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2 + ) + # Relatively low error percentage (~~ MAE * 100% / s1_duration_base) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["duration"]["mape"], + static_quality["by_name"]["raw_state_1"]["duration"]["mae"] + * 100 + / s1_duration_base, + places=1, + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["duration"]["smape"], + static_quality["by_name"]["raw_state_1"]["duration"]["mae"] + * 100 + / s1_duration_base, + places=1, + ) + + # static error is high for parameterized data + + # MAE == mean(abs(actual value - model value)) + # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2 + ) + # high percentage error due to low s1_power_base + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["mape"], 19, delta=2 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2 + ) + + # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2 + ) + + # low percentage error due to high s2_duration_base (~~ 3.5 %) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["mape"], + 25 * 100 / s2_duration_base, + delta=1, + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["smape"], + 25 * 100 / s2_duration_base, + delta=1, + ) + + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2 + ) + + # low percentage error due to high s2_power_base (~~ 1.7 %) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["mape"], + 25 * 100 / s2_power_base, + delta=1, + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["smape"], + 25 * 100 / s2_power_base, + delta=1, + ) + + # raw_state_1/duration does not depend on parameters and delegates to the static model + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["mae"], + static_quality["by_name"]["raw_state_1"]["duration"]["mae"], + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"], + static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"], + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["mape"], + static_quality["by_name"]["raw_state_1"]["duration"]["mape"], + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["smape"], + static_quality["by_name"]["raw_state_1"]["duration"]["smape"], + ) + + # fitted param-model quality reflects normal distribution scale for all data + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1 + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1 + ) + + self.assertTrue( + param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale + ) + self.assertTrue( + param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["power"]["mape"], 7.5, delta=1 + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1 + ) + + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["mae"], + s2_duration_scale, + delta=0.2, + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], + s2_duration_scale, + delta=0.2, + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["mape"], + 0.12, + delta=0.01, + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["smape"], + 0.12, + delta=0.01, + ) + + # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to + # increased regression errors + self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15) + self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18) + + # still: low percentage error due to high s2_power_base + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["mape"], 0.9, places=1 + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1 + ) + + def test_model_crossvalidation_10fold(self): + # rng = np.random.default_rng(seed=1312) # requiresy NumPy >= 1.17 + np.random.seed(1312) + X = np.arange(500) % 50 + parameter_names = ["p_mod5", "p_linear"] + + s1_duration_base = 70 + s1_duration_scale = 2 + s1_power_base = 50 + s1_power_scale = 7 + s2_duration_base = 700 + s2_duration_scale = 1 + s2_power_base = 1500 + s2_power_scale = 10 + + by_name = { + "raw_state_1": { + "isa": "state", + "param": [(x % 5, x) for x in X], + "duration": s1_duration_base + + np.random.normal(size=X.size, scale=s1_duration_scale), + "power": s1_power_base + + X + + np.random.normal(size=X.size, scale=s1_power_scale), + "attributes": ["duration", "power"], + }, + "raw_state_2": { + "isa": "state", + "param": [(x % 5, x) for x in X], + "duration": s2_duration_base + - 2 * X + + np.random.normal(size=X.size, scale=s2_duration_scale), + "power": s2_power_base + + X + + np.random.normal(size=X.size, scale=s2_power_scale), + "attributes": ["duration", "power"], + }, + } + by_param = by_name_to_by_param(by_name) + arg_count = dict() + model = PTAModel(by_name, parameter_names, arg_count) + validator = CrossValidator(PTAModel, by_name, parameter_names, arg_count) + + static_quality = validator.kfold(lambda m: m.get_static(), 10) + param_quality = validator.kfold(lambda m: m.get_fitted()[0], 10) + + print(static_quality) + + # static quality reflects normal distribution scale for non-parameterized data + + # the Root Mean Square Deviation must not be greater the scale (i.e., standard deviation) of the normal distribution + # Low Mean Absolute Error (< 2) + self.assertTrue(static_quality["by_name"]["raw_state_1"]["duration"]["mae"] < 2) + # Low Root Mean Square Deviation (< scale == 2) + self.assertTrue( + static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"] < 2 + ) + # Relatively low error percentage (~~ MAE * 100% / s1_duration_base) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["duration"]["smape"], + static_quality["by_name"]["raw_state_1"]["duration"]["mae"] + * 100 + / s1_duration_base, + places=1, + ) + + # static error is high for parameterized data + + # MAE == mean(abs(actual value - model value)) + # parameter range is [0, 50) -> mean 25, deviation range is [0, 25) -> mean deviation is 12.5 ± gauss scale + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["mae"], 12.5, delta=1 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["rmsd"], 16, delta=2 + ) + # high percentage error due to low s1_power_base + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_1"]["power"]["smape"], 19, delta=2 + ) + + # parameter range is [0, 100) -> mean deviation is 25 ± gauss scale + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["mae"], 25, delta=2 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], 30, delta=2 + ) + + # low percentage error due to high s2_duration_base (~~ 3.5 %) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["duration"]["smape"], + 25 * 100 / s2_duration_base, + delta=1, + ) + + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["mae"], 12.5, delta=2 + ) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["rmsd"], 17, delta=2 + ) + + # low percentage error due to high s2_power_base (~~ 1.7 %) + self.assertAlmostEqual( + static_quality["by_name"]["raw_state_2"]["power"]["smape"], + 25 * 100 / s2_power_base, + delta=1, + ) + + # raw_state_1/duration does not depend on parameters and delegates to the static model + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["mae"], + static_quality["by_name"]["raw_state_1"]["duration"]["mae"], + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["rmsd"], + static_quality["by_name"]["raw_state_1"]["duration"]["rmsd"], + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["duration"]["smape"], + static_quality["by_name"]["raw_state_1"]["duration"]["smape"], + ) + + # fitted param-model quality reflects normal distribution scale for all data + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1 + ) + + self.assertTrue( + param_quality["by_name"]["raw_state_1"]["power"]["mae"] < s1_power_scale + ) + self.assertTrue( + param_quality["by_name"]["raw_state_1"]["power"]["rmsd"] < s1_power_scale + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_1"]["power"]["smape"], 7.5, delta=1 + ) + + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["mae"], + s2_duration_scale, + delta=0.2, + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["rmsd"], + s2_duration_scale, + delta=0.2, + ) + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["duration"]["smape"], + 0.12, + delta=0.01, + ) + + # ... unless the signal-to-noise ratio (parameter range = [0 .. 50] vs. scale = 10) is bad, leading to + # increased regression errors + self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["mae"] < 15) + self.assertTrue(param_quality["by_name"]["raw_state_2"]["power"]["rmsd"] < 18) + + # still: low percentage error due to high s2_power_base + self.assertAlmostEqual( + param_quality["by_name"]["raw_state_2"]["power"]["smape"], 0.9, places=1 + ) + + +class TestFromFile(unittest.TestCase): + def test_singlefile_rf24(self): + raw_data = RawData(["test-data/20170220_164723_RF24_int_A.tar"]) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'POWERDOWN RX STANDBY1 TX'.split(' ')) - self.assertEqual(model.transitions(), 'begin epilogue powerDown powerUp setDataRate_num setPALevel_num startListening stopListening write_nb'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual(model.states(), "POWERDOWN RX STANDBY1 TX".split(" ")) + self.assertEqual( + model.transitions(), + "begin epilogue powerDown powerUp setDataRate_num setPALevel_num startListening stopListening write_nb".split( + " " + ), + ) static_model = model.get_static() - self.assertAlmostEqual(static_model('POWERDOWN', 'power'), 0, places=0) - self.assertAlmostEqual(static_model('RX', 'power'), 52254, places=0) - self.assertAlmostEqual(static_model('STANDBY1', 'power'), 7, places=0) - self.assertAlmostEqual(static_model('TX', 'power'), 18414, places=0) - self.assertAlmostEqual(static_model('begin', 'energy'), 1652249, places=0) - self.assertAlmostEqual(static_model('epilogue', 'energy'), 15449, places=0) - self.assertAlmostEqual(static_model('powerDown', 'energy'), 4547, places=0) - self.assertAlmostEqual(static_model('powerUp', 'energy'), 1641765, places=0) - self.assertAlmostEqual(static_model('setDataRate_num', 'energy'), 7749, places=0) - self.assertAlmostEqual(static_model('setPALevel_num', 'energy'), 4700, places=0) - self.assertAlmostEqual(static_model('startListening', 'energy'), 4309602, places=0) - self.assertAlmostEqual(static_model('stopListening', 'energy'), 193775, places=0) - self.assertAlmostEqual(static_model('write_nb', 'energy'), 218339, places=0) - self.assertAlmostEqual(static_model('begin', 'rel_energy_prev'), 1649571, places=0) - self.assertAlmostEqual(static_model('epilogue', 'rel_energy_prev'), -744114, places=0) - self.assertAlmostEqual(static_model('powerDown', 'rel_energy_prev'), 3854, places=0) - self.assertAlmostEqual(static_model('powerUp', 'rel_energy_prev'), 1641381, places=0) - self.assertAlmostEqual(static_model('setDataRate_num', 'rel_energy_prev'), 6777, places=0) - self.assertAlmostEqual(static_model('setPALevel_num', 'rel_energy_prev'), 3728, places=0) - self.assertAlmostEqual(static_model('startListening', 'rel_energy_prev'), 4307769, places=0) - self.assertAlmostEqual(static_model('stopListening', 'rel_energy_prev'), -13533693, places=0) - self.assertAlmostEqual(static_model('write_nb', 'rel_energy_prev'), 214618, places=0) - self.assertAlmostEqual(static_model('begin', 'duration'), 19830, places=0) - self.assertAlmostEqual(static_model('epilogue', 'duration'), 40, places=0) - self.assertAlmostEqual(static_model('powerDown', 'duration'), 90, places=0) - self.assertAlmostEqual(static_model('powerUp', 'duration'), 10030, places=0) - self.assertAlmostEqual(static_model('setDataRate_num', 'duration'), 140, places=0) - self.assertAlmostEqual(static_model('setPALevel_num', 'duration'), 90, places=0) - self.assertAlmostEqual(static_model('startListening', 'duration'), 260, places=0) - self.assertAlmostEqual(static_model('stopListening', 'duration'), 260, places=0) - self.assertAlmostEqual(static_model('write_nb', 'duration'), 510, places=0) - - self.assertAlmostEqual(model.stats.param_dependence_ratio('POWERDOWN', 'power', 'datarate'), 0, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('POWERDOWN', 'power', 'txbytes'), 0, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('POWERDOWN', 'power', 'txpower'), 0, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('RX', 'power', 'datarate'), 0.99, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('RX', 'power', 'txbytes'), 0, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('RX', 'power', 'txpower'), 0.01, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('STANDBY1', 'power', 'datarate'), 0.04, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('STANDBY1', 'power', 'txbytes'), 0.35, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('STANDBY1', 'power', 'txpower'), 0.32, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('TX', 'power', 'datarate'), 1, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('TX', 'power', 'txbytes'), 0.09, places=2) - self.assertAlmostEqual(model.stats.param_dependence_ratio('TX', 'power', 'txpower'), 1, places=2) + self.assertAlmostEqual(static_model("POWERDOWN", "power"), 0, places=0) + self.assertAlmostEqual(static_model("RX", "power"), 52254, places=0) + self.assertAlmostEqual(static_model("STANDBY1", "power"), 7, places=0) + self.assertAlmostEqual(static_model("TX", "power"), 18414, places=0) + self.assertAlmostEqual(static_model("begin", "energy"), 1652249, places=0) + self.assertAlmostEqual(static_model("epilogue", "energy"), 15449, places=0) + self.assertAlmostEqual(static_model("powerDown", "energy"), 4547, places=0) + self.assertAlmostEqual(static_model("powerUp", "energy"), 1641765, places=0) + self.assertAlmostEqual( + static_model("setDataRate_num", "energy"), 7749, places=0 + ) + self.assertAlmostEqual(static_model("setPALevel_num", "energy"), 4700, places=0) + self.assertAlmostEqual( + static_model("startListening", "energy"), 4309602, places=0 + ) + self.assertAlmostEqual( + static_model("stopListening", "energy"), 193775, places=0 + ) + self.assertAlmostEqual(static_model("write_nb", "energy"), 218339, places=0) + self.assertAlmostEqual( + static_model("begin", "rel_energy_prev"), 1649571, places=0 + ) + self.assertAlmostEqual( + static_model("epilogue", "rel_energy_prev"), -744114, places=0 + ) + self.assertAlmostEqual( + static_model("powerDown", "rel_energy_prev"), 3854, places=0 + ) + self.assertAlmostEqual( + static_model("powerUp", "rel_energy_prev"), 1641381, places=0 + ) + self.assertAlmostEqual( + static_model("setDataRate_num", "rel_energy_prev"), 6777, places=0 + ) + self.assertAlmostEqual( + static_model("setPALevel_num", "rel_energy_prev"), 3728, places=0 + ) + self.assertAlmostEqual( + static_model("startListening", "rel_energy_prev"), 4307769, places=0 + ) + self.assertAlmostEqual( + static_model("stopListening", "rel_energy_prev"), -13533693, places=0 + ) + self.assertAlmostEqual( + static_model("write_nb", "rel_energy_prev"), 214618, places=0 + ) + self.assertAlmostEqual(static_model("begin", "duration"), 19830, places=0) + self.assertAlmostEqual(static_model("epilogue", "duration"), 40, places=0) + self.assertAlmostEqual(static_model("powerDown", "duration"), 90, places=0) + self.assertAlmostEqual(static_model("powerUp", "duration"), 10030, places=0) + self.assertAlmostEqual( + static_model("setDataRate_num", "duration"), 140, places=0 + ) + self.assertAlmostEqual(static_model("setPALevel_num", "duration"), 90, places=0) + self.assertAlmostEqual( + static_model("startListening", "duration"), 260, places=0 + ) + self.assertAlmostEqual(static_model("stopListening", "duration"), 260, places=0) + self.assertAlmostEqual(static_model("write_nb", "duration"), 510, places=0) + + self.assertAlmostEqual( + model.stats.param_dependence_ratio("POWERDOWN", "power", "datarate"), + 0, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("POWERDOWN", "power", "txbytes"), + 0, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("POWERDOWN", "power", "txpower"), + 0, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("RX", "power", "datarate"), + 0.99, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("RX", "power", "txbytes"), 0, places=2 + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("RX", "power", "txpower"), 0.01, places=2 + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("STANDBY1", "power", "datarate"), + 0.04, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("STANDBY1", "power", "txbytes"), + 0.35, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("STANDBY1", "power", "txpower"), + 0.32, + places=2, + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("TX", "power", "datarate"), 1, places=2 + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("TX", "power", "txbytes"), 0.09, places=2 + ) + self.assertAlmostEqual( + model.stats.param_dependence_ratio("TX", "power", "txpower"), 1, places=2 + ) param_model, param_info = model.get_fitted() - self.assertEqual(param_info('POWERDOWN', 'power'), None) - self.assertEqual(param_info('RX', 'power')['function']._model_str, - '0 + regression_arg(0) + regression_arg(1) * np.sqrt(parameter(datarate))') - self.assertAlmostEqual(param_info('RX', 'power')['function']._regression_args[0], 48530.7, places=0) - self.assertAlmostEqual(param_info('RX', 'power')['function']._regression_args[1], 117, places=0) - self.assertEqual(param_info('STANDBY1', 'power'), None) - self.assertEqual(param_info('TX', 'power')['function']._model_str, - '0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * parameter(txpower) + regression_arg(3) * 1/(parameter(datarate)) * parameter(txpower)') - self.assertEqual(param_info('epilogue', 'timeout')['function']._model_str, - '0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))') - self.assertEqual(param_info('stopListening', 'duration')['function']._model_str, - '0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))') - - self.assertAlmostEqual(param_model('RX', 'power', param=[1, None, None]), 48647, places=-1) - - def test_model_singlefile_mmparam(self): - raw_data = RawData(['test-data/20161221_123347_mmparam.tar']) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + self.assertEqual(param_info("POWERDOWN", "power"), None) + self.assertEqual( + param_info("RX", "power")["function"].model_function, + "0 + regression_arg(0) + regression_arg(1) * np.sqrt(parameter(datarate))", + ) + self.assertAlmostEqual( + param_info("RX", "power")["function"].model_args[0], 48530.7, places=0 + ) + self.assertAlmostEqual( + param_info("RX", "power")["function"].model_args[1], 117, places=0 + ) + self.assertEqual(param_info("STANDBY1", "power"), None) + self.assertEqual( + param_info("TX", "power")["function"].model_function, + "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate)) + regression_arg(2) * parameter(txpower) + regression_arg(3) * 1/(parameter(datarate)) * parameter(txpower)", + ) + self.assertEqual( + param_info("epilogue", "timeout")["function"].model_function, + "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))", + ) + self.assertEqual( + param_info("stopListening", "duration")["function"].model_function, + "0 + regression_arg(0) + regression_arg(1) * 1/(parameter(datarate))", + ) + + self.assertAlmostEqual( + param_model("RX", "power", param=[1, None, None]), 48647, places=-1 + ) + + def test_singlefile_mmparam(self): + raw_data = RawData(["test-data/20161221_123347_mmparam.tar"]) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'OFF ON'.split(' ')) - self.assertEqual(model.transitions(), 'off setBrightness'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual(model.states(), "OFF ON".split(" ")) + self.assertEqual(model.transitions(), "off setBrightness".split(" ")) static_model = model.get_static() - self.assertAlmostEqual(static_model('OFF', 'power'), 7124, places=0) - self.assertAlmostEqual(static_model('ON', 'power'), 17866, places=0) - self.assertAlmostEqual(static_model('off', 'energy'), 268079197, places=0) - self.assertAlmostEqual(static_model('setBrightness', 'energy'), 168912773, places=0) - self.assertAlmostEqual(static_model('off', 'rel_energy_prev'), 105040198, places=0) - self.assertAlmostEqual(static_model('setBrightness', 'rel_energy_prev'), 103745586, places=0) - self.assertAlmostEqual(static_model('off', 'duration'), 9130, places=0) - self.assertAlmostEqual(static_model('setBrightness', 'duration'), 9130, places=0) + self.assertAlmostEqual(static_model("OFF", "power"), 7124, places=0) + self.assertAlmostEqual(static_model("ON", "power"), 17866, places=0) + self.assertAlmostEqual(static_model("off", "energy"), 268079197, places=0) + self.assertAlmostEqual( + static_model("setBrightness", "energy"), 168912773, places=0 + ) + self.assertAlmostEqual( + static_model("off", "rel_energy_prev"), 105040198, places=0 + ) + self.assertAlmostEqual( + static_model("setBrightness", "rel_energy_prev"), 103745586, places=0 + ) + self.assertAlmostEqual(static_model("off", "duration"), 9130, places=0) + self.assertAlmostEqual( + static_model("setBrightness", "duration"), 9130, places=0 + ) param_lut_model = model.get_param_lut() - self.assertAlmostEqual(param_lut_model('OFF', 'power', param=[None, None]), 7124, places=0) + self.assertAlmostEqual( + param_lut_model("OFF", "power", param=[None, None]), 7124, places=0 + ) with self.assertRaises(KeyError): - param_lut_model('ON', 'power', param=[None, None]) - param_lut_model('ON', 'power', param=['a']) - param_lut_model('ON', 'power', param=[0]) - self.assertTrue(param_lut_model('ON', 'power', param=[0, 0])) + param_lut_model("ON", "power", param=[None, None]) + param_lut_model("ON", "power", param=["a"]) + param_lut_model("ON", "power", param=[0]) + self.assertTrue(param_lut_model("ON", "power", param=[0, 0])) param_lut_model = model.get_param_lut(fallback=True) - self.assertAlmostEqual(param_lut_model('ON', 'power', param=[None, None]), 17866, places=0) + self.assertAlmostEqual( + param_lut_model("ON", "power", param=[None, None]), 17866, places=0 + ) - def test_model_multifile_lm75x(self): + def test_multifile_lm75x(self): testfiles = [ - 'test-data/20170116_124500_LM75x.tar', - 'test-data/20170116_131306_LM75x.tar', + "test-data/20170116_124500_LM75x.tar", + "test-data/20170116_131306_LM75x.tar", ] raw_data = RawData(testfiles) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'ACTIVE POWEROFF'.split(' ')) - self.assertEqual(model.transitions(), 'getTemp setHyst setOS shutdown start'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual(model.states(), "ACTIVE POWEROFF".split(" ")) + self.assertEqual( + model.transitions(), "getTemp setHyst setOS shutdown start".split(" ") + ) static_model = model.get_static() - self.assertAlmostEqual(static_model('ACTIVE', 'power'), 332, places=0) - self.assertAlmostEqual(static_model('POWEROFF', 'power'), 7, places=0) - self.assertAlmostEqual(static_model('getTemp', 'energy'), 26016748, places=0) - self.assertAlmostEqual(static_model('setHyst', 'energy'), 22082226, places=0) - self.assertAlmostEqual(static_model('setOS', 'energy'), 21774238, places=0) - self.assertAlmostEqual(static_model('shutdown', 'energy'), 11808160, places=0) - self.assertAlmostEqual(static_model('start', 'energy'), 12445302, places=0) - self.assertAlmostEqual(static_model('getTemp', 'rel_energy_prev'), 21722720, places=0) - self.assertAlmostEqual(static_model('setHyst', 'rel_energy_prev'), 19001499, places=0) - self.assertAlmostEqual(static_model('setOS', 'rel_energy_prev'), 18693283, places=0) - self.assertAlmostEqual(static_model('shutdown', 'rel_energy_prev'), 11746224, places=0) - self.assertAlmostEqual(static_model('start', 'rel_energy_prev'), 12391462, places=0) - self.assertAlmostEqual(static_model('getTemp', 'duration'), 12740, places=0) - self.assertAlmostEqual(static_model('setHyst', 'duration'), 9140, places=0) - self.assertAlmostEqual(static_model('setOS', 'duration'), 9140, places=0) - self.assertAlmostEqual(static_model('shutdown', 'duration'), 6980, places=0) - self.assertAlmostEqual(static_model('start', 'duration'), 6980, places=0) - - def test_model_multifile_sharp(self): + self.assertAlmostEqual(static_model("ACTIVE", "power"), 332, places=0) + self.assertAlmostEqual(static_model("POWEROFF", "power"), 7, places=0) + self.assertAlmostEqual(static_model("getTemp", "energy"), 26016748, places=0) + self.assertAlmostEqual(static_model("setHyst", "energy"), 22082226, places=0) + self.assertAlmostEqual(static_model("setOS", "energy"), 21774238, places=0) + self.assertAlmostEqual(static_model("shutdown", "energy"), 11808160, places=0) + self.assertAlmostEqual(static_model("start", "energy"), 12445302, places=0) + self.assertAlmostEqual( + static_model("getTemp", "rel_energy_prev"), 21722720, places=0 + ) + self.assertAlmostEqual( + static_model("setHyst", "rel_energy_prev"), 19001499, places=0 + ) + self.assertAlmostEqual( + static_model("setOS", "rel_energy_prev"), 18693283, places=0 + ) + self.assertAlmostEqual( + static_model("shutdown", "rel_energy_prev"), 11746224, places=0 + ) + self.assertAlmostEqual( + static_model("start", "rel_energy_prev"), 12391462, places=0 + ) + self.assertAlmostEqual(static_model("getTemp", "duration"), 12740, places=0) + self.assertAlmostEqual(static_model("setHyst", "duration"), 9140, places=0) + self.assertAlmostEqual(static_model("setOS", "duration"), 9140, places=0) + self.assertAlmostEqual(static_model("shutdown", "duration"), 6980, places=0) + self.assertAlmostEqual(static_model("start", "duration"), 6980, places=0) + + def test_multifile_sharp(self): testfiles = [ - 'test-data/20170116_145420_sharpLS013B4DN.tar', - 'test-data/20170116_151348_sharpLS013B4DN.tar', + "test-data/20170116_145420_sharpLS013B4DN.tar", + "test-data/20170116_151348_sharpLS013B4DN.tar", ] raw_data = RawData(testfiles) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'DISABLED ENABLED'.split(' ')) - self.assertEqual(model.transitions(), 'clear disable enable ioInit sendLine toggleVCOM'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual(model.states(), "DISABLED ENABLED".split(" ")) + self.assertEqual( + model.transitions(), + "clear disable enable ioInit sendLine toggleVCOM".split(" "), + ) static_model = model.get_static() - self.assertAlmostEqual(static_model('DISABLED', 'power'), 22, places=0) - self.assertAlmostEqual(static_model('ENABLED', 'power'), 24, places=0) - self.assertAlmostEqual(static_model('clear', 'energy'), 14059, places=0) - self.assertAlmostEqual(static_model('disable', 'energy'), 0, places=0) - self.assertAlmostEqual(static_model('enable', 'energy'), 0, places=0) - self.assertAlmostEqual(static_model('ioInit', 'energy'), 0, places=0) - self.assertAlmostEqual(static_model('sendLine', 'energy'), 37874, places=0) - self.assertAlmostEqual(static_model('toggleVCOM', 'energy'), 30991, places=0) - self.assertAlmostEqual(static_model('clear', 'rel_energy_prev'), 13329, places=0) - self.assertAlmostEqual(static_model('disable', 'rel_energy_prev'), 0, places=0) - self.assertAlmostEqual(static_model('enable', 'rel_energy_prev'), 0, places=0) - self.assertAlmostEqual(static_model('ioInit', 'rel_energy_prev'), 0, places=0) - self.assertAlmostEqual(static_model('sendLine', 'rel_energy_prev'), 33447, places=0) - self.assertAlmostEqual(static_model('toggleVCOM', 'rel_energy_prev'), 30242, places=0) - self.assertAlmostEqual(static_model('clear', 'duration'), 30, places=0) - self.assertAlmostEqual(static_model('disable', 'duration'), 0, places=0) - self.assertAlmostEqual(static_model('enable', 'duration'), 0, places=0) - self.assertAlmostEqual(static_model('ioInit', 'duration'), 0, places=0) - self.assertAlmostEqual(static_model('sendLine', 'duration'), 180, places=0) - self.assertAlmostEqual(static_model('toggleVCOM', 'duration'), 30, places=0) - - def test_model_multifile_mmstatic(self): + self.assertAlmostEqual(static_model("DISABLED", "power"), 22, places=0) + self.assertAlmostEqual(static_model("ENABLED", "power"), 24, places=0) + self.assertAlmostEqual(static_model("clear", "energy"), 14059, places=0) + self.assertAlmostEqual(static_model("disable", "energy"), 0, places=0) + self.assertAlmostEqual(static_model("enable", "energy"), 0, places=0) + self.assertAlmostEqual(static_model("ioInit", "energy"), 0, places=0) + self.assertAlmostEqual(static_model("sendLine", "energy"), 37874, places=0) + self.assertAlmostEqual(static_model("toggleVCOM", "energy"), 30991, places=0) + self.assertAlmostEqual( + static_model("clear", "rel_energy_prev"), 13329, places=0 + ) + self.assertAlmostEqual(static_model("disable", "rel_energy_prev"), 0, places=0) + self.assertAlmostEqual(static_model("enable", "rel_energy_prev"), 0, places=0) + self.assertAlmostEqual(static_model("ioInit", "rel_energy_prev"), 0, places=0) + self.assertAlmostEqual( + static_model("sendLine", "rel_energy_prev"), 33447, places=0 + ) + self.assertAlmostEqual( + static_model("toggleVCOM", "rel_energy_prev"), 30242, places=0 + ) + self.assertAlmostEqual(static_model("clear", "duration"), 30, places=0) + self.assertAlmostEqual(static_model("disable", "duration"), 0, places=0) + self.assertAlmostEqual(static_model("enable", "duration"), 0, places=0) + self.assertAlmostEqual(static_model("ioInit", "duration"), 0, places=0) + self.assertAlmostEqual(static_model("sendLine", "duration"), 180, places=0) + self.assertAlmostEqual(static_model("toggleVCOM", "duration"), 30, places=0) + + def test_multifile_mmstatic(self): testfiles = [ - 'test-data/20170116_143516_mmstatic.tar', - 'test-data/20170116_142654_mmstatic.tar', + "test-data/20170116_143516_mmstatic.tar", + "test-data/20170116_142654_mmstatic.tar", ] raw_data = RawData(testfiles) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'B G OFF R'.split(' ')) - self.assertEqual(model.transitions(), 'blue green off red'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual(model.states(), "B G OFF R".split(" ")) + self.assertEqual(model.transitions(), "blue green off red".split(" ")) static_model = model.get_static() - self.assertAlmostEqual(static_model('B', 'power'), 29443, places=0) - self.assertAlmostEqual(static_model('G', 'power'), 29432, places=0) - self.assertAlmostEqual(static_model('OFF', 'power'), 7057, places=0) - self.assertAlmostEqual(static_model('R', 'power'), 49068, places=0) - self.assertAlmostEqual(static_model('blue', 'energy'), 374440955, places=0) - self.assertAlmostEqual(static_model('green', 'energy'), 372026027, places=0) - self.assertAlmostEqual(static_model('off', 'energy'), 372999554, places=0) - self.assertAlmostEqual(static_model('red', 'energy'), 378936634, places=0) - self.assertAlmostEqual(static_model('blue', 'rel_energy_prev'), 105535587, places=0) - self.assertAlmostEqual(static_model('green', 'rel_energy_prev'), 102999371, places=0) - self.assertAlmostEqual(static_model('off', 'rel_energy_prev'), 103613698, places=0) - self.assertAlmostEqual(static_model('red', 'rel_energy_prev'), 110474331, places=0) - self.assertAlmostEqual(static_model('blue', 'duration'), 9140, places=0) - self.assertAlmostEqual(static_model('green', 'duration'), 9140, places=0) - self.assertAlmostEqual(static_model('off', 'duration'), 9140, places=0) - self.assertAlmostEqual(static_model('red', 'duration'), 9140, places=0) - - @pytest.mark.skipif('TEST_SLOW' not in os.environ, reason="slow test, set TEST_SLOW=1 to run") - def test_model_multifile_cc1200(self): + self.assertAlmostEqual(static_model("B", "power"), 29443, places=0) + self.assertAlmostEqual(static_model("G", "power"), 29432, places=0) + self.assertAlmostEqual(static_model("OFF", "power"), 7057, places=0) + self.assertAlmostEqual(static_model("R", "power"), 49068, places=0) + self.assertAlmostEqual(static_model("blue", "energy"), 374440955, places=0) + self.assertAlmostEqual(static_model("green", "energy"), 372026027, places=0) + self.assertAlmostEqual(static_model("off", "energy"), 372999554, places=0) + self.assertAlmostEqual(static_model("red", "energy"), 378936634, places=0) + self.assertAlmostEqual( + static_model("blue", "rel_energy_prev"), 105535587, places=0 + ) + self.assertAlmostEqual( + static_model("green", "rel_energy_prev"), 102999371, places=0 + ) + self.assertAlmostEqual( + static_model("off", "rel_energy_prev"), 103613698, places=0 + ) + self.assertAlmostEqual( + static_model("red", "rel_energy_prev"), 110474331, places=0 + ) + self.assertAlmostEqual(static_model("blue", "duration"), 9140, places=0) + self.assertAlmostEqual(static_model("green", "duration"), 9140, places=0) + self.assertAlmostEqual(static_model("off", "duration"), 9140, places=0) + self.assertAlmostEqual(static_model("red", "duration"), 9140, places=0) + + @pytest.mark.skipif( + "TEST_SLOW" not in os.environ, reason="slow test, set TEST_SLOW=1 to run" + ) + def test_multifile_cc1200(self): testfiles = [ - 'test-data/20170125_125433_cc1200.tar', - 'test-data/20170125_142420_cc1200.tar', - 'test-data/20170125_144957_cc1200.tar', - 'test-data/20170125_151149_cc1200.tar', - 'test-data/20170125_151824_cc1200.tar', - 'test-data/20170125_154019_cc1200.tar', + "test-data/20170125_125433_cc1200.tar", + "test-data/20170125_142420_cc1200.tar", + "test-data/20170125_144957_cc1200.tar", + "test-data/20170125_151149_cc1200.tar", + "test-data/20170125_151824_cc1200.tar", + "test-data/20170125_154019_cc1200.tar", ] raw_data = RawData(testfiles) - preprocessed_data = raw_data.get_preprocessed_data(verbose=False) + preprocessed_data = raw_data.get_preprocessed_data() by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data) - model = PTAModel(by_name, parameters, arg_count, verbose=False) - self.assertEqual(model.states(), 'IDLE RX SLEEP SLEEP_EWOR SYNTH_ON TX XOFF'.split(' ')) - self.assertEqual(model.transitions(), 'crystal_off eWOR idle init prepare_xmit receive send setSymbolRate setTxPower sleep txDone'.split(' ')) + model = PTAModel(by_name, parameters, arg_count) + self.assertEqual( + model.states(), "IDLE RX SLEEP SLEEP_EWOR SYNTH_ON TX XOFF".split(" ") + ) + self.assertEqual( + model.transitions(), + "crystal_off eWOR idle init prepare_xmit receive send setSymbolRate setTxPower sleep txDone".split( + " " + ), + ) static_model = model.get_static() - self.assertAlmostEqual(static_model('IDLE', 'power'), 9500, places=0) - self.assertAlmostEqual(static_model('RX', 'power'), 85177, places=0) - self.assertAlmostEqual(static_model('SLEEP', 'power'), 143, places=0) - self.assertAlmostEqual(static_model('SLEEP_EWOR', 'power'), 81801, places=0) - self.assertAlmostEqual(static_model('SYNTH_ON', 'power'), 60036, places=0) - self.assertAlmostEqual(static_model('TX', 'power'), 92461, places=0) - self.assertAlmostEqual(static_model('XOFF', 'power'), 780, places=0) - self.assertAlmostEqual(static_model('crystal_off', 'energy'), 114658, places=0) - self.assertAlmostEqual(static_model('eWOR', 'energy'), 317556, places=0) - self.assertAlmostEqual(static_model('idle', 'energy'), 717713, places=0) - self.assertAlmostEqual(static_model('init', 'energy'), 23028941, places=0) - self.assertAlmostEqual(static_model('prepare_xmit', 'energy'), 378552, places=0) - self.assertAlmostEqual(static_model('receive', 'energy'), 380335, places=0) - self.assertAlmostEqual(static_model('send', 'energy'), 4282597, places=0) - self.assertAlmostEqual(static_model('setSymbolRate', 'energy'), 962060, places=0) - self.assertAlmostEqual(static_model('setTxPower', 'energy'), 288701, places=0) - self.assertAlmostEqual(static_model('sleep', 'energy'), 104445, places=0) - self.assertEqual(static_model('txDone', 'energy'), 0) + self.assertAlmostEqual(static_model("IDLE", "power"), 9500, places=0) + self.assertAlmostEqual(static_model("RX", "power"), 85177, places=0) + self.assertAlmostEqual(static_model("SLEEP", "power"), 143, places=0) + self.assertAlmostEqual(static_model("SLEEP_EWOR", "power"), 81801, places=0) + self.assertAlmostEqual(static_model("SYNTH_ON", "power"), 60036, places=0) + self.assertAlmostEqual(static_model("TX", "power"), 92461, places=0) + self.assertAlmostEqual(static_model("XOFF", "power"), 780, places=0) + self.assertAlmostEqual(static_model("crystal_off", "energy"), 114658, places=0) + self.assertAlmostEqual(static_model("eWOR", "energy"), 317556, places=0) + self.assertAlmostEqual(static_model("idle", "energy"), 717713, places=0) + self.assertAlmostEqual(static_model("init", "energy"), 23028941, places=0) + self.assertAlmostEqual(static_model("prepare_xmit", "energy"), 378552, places=0) + self.assertAlmostEqual(static_model("receive", "energy"), 380335, places=0) + self.assertAlmostEqual(static_model("send", "energy"), 4282597, places=0) + self.assertAlmostEqual( + static_model("setSymbolRate", "energy"), 962060, places=0 + ) + self.assertAlmostEqual(static_model("setTxPower", "energy"), 288701, places=0) + self.assertAlmostEqual(static_model("sleep", "energy"), 104445, places=0) + self.assertEqual(static_model("txDone", "energy"), 0) param_model, param_info = model.get_fitted() - self.assertEqual(param_info('IDLE', 'power'), None) - self.assertEqual(param_info('RX', 'power')['function']._model_str, - '0 + regression_arg(0) + regression_arg(1) * np.log(parameter(symbolrate) + 1)') - self.assertEqual(param_info('SLEEP', 'power'), None) - self.assertEqual(param_info('SLEEP_EWOR', 'power'), None) - self.assertEqual(param_info('SYNTH_ON', 'power'), None) - self.assertEqual(param_info('XOFF', 'power'), None) + self.assertEqual(param_info("IDLE", "power"), None) + self.assertEqual( + param_info("RX", "power")["function"].model_function, + "0 + regression_arg(0) + regression_arg(1) * np.log(parameter(symbolrate) + 1)", + ) + self.assertEqual(param_info("SLEEP", "power"), None) + self.assertEqual(param_info("SLEEP_EWOR", "power"), None) + self.assertEqual(param_info("SYNTH_ON", "power"), None) + self.assertEqual(param_info("XOFF", "power"), None) - self.assertAlmostEqual(param_info('RX', 'power')['function']._regression_args[0], 84415, places=0) - self.assertAlmostEqual(param_info('RX', 'power')['function']._regression_args[1], 206, places=0) + self.assertAlmostEqual( + param_info("RX", "power")["function"].model_args[0], 84415, places=0 + ) + self.assertAlmostEqual( + param_info("RX", "power")["function"].model_args[1], 206, places=0 + ) -if __name__ == '__main__': +if __name__ == "__main__": unittest.main() |