summaryrefslogtreecommitdiff
path: root/bin/Proof_Of_Concept_PELT.py
blob: 688c5a730ed510ad3f99f56c537b16216223a90f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
import json
import os
import time
import sys
import getopt
import re
import pprint
from multiprocessing import Pool, Manager, cpu_count
from kneed import KneeLocator
from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
import ruptures as rpt
import numpy as np

from dfatool.functions import analytic
from dfatool.loader import RawData
from dfatool import parameters
from dfatool.model import ParallelParamFit, PTAModel
from dfatool.utils import by_name_to_by_param

# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display

# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100
# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=28 --refinement_thresh=100 --cache_dicts --cache_loc="..\data\TX2_cache"
from dfatool.validation import CrossValidator


# helper functions. Not used
def plot_data_from_json(filename, trace_num, x_axis, y_axis):
    with open(filename, 'r') as file:
        tx_data = json.load(file)
    print(tx_data[trace_num]['parameter'])
    plt.plot(tx_data[trace_num]['offline'][0]['uW'])
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


def plot_data_vs_mean(signal, x_axis, y_axis):
    plt.plot(signal)
    average = np.mean(signal)
    plt.hlines(average, 0, len(signal))
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis):
    plt.plot(signal1)
    lens = max(len(signal1), len(signal2))
    average = np.mean(signal1)
    plt.hlines(average, 0, lens, color='red')
    plt.vlines(len(signal1), 0, 100000, color='red', linestyles='dashed')
    plt.plot(signal2)
    average = np.mean(signal2)
    plt.hlines(average, 0, lens, color='green')
    plt.vlines(len(signal2), 0, 100000, color='green', linestyles='dashed')
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


# returns the found changepoints by algo for the specific penalty pen.
# algo should be the return value of Pelt(...).fit(signal)
# Also puts a token in container q to let the progressmeter know the changepoints for penalty pen
# have been calculated.
# used for parallel calculation of changepoints vs penalty
def get_bkps(algo, pen, q):
    res = pen, len(algo.predict(pen=pen))
    q.put(pen)
    return res


# Wrapper for kneedle
def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing'):
    kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
    kneepoint = (kneedle.knee, kneedle.knee_y)
    return kneepoint


# returns the changepoints found on signal with penalty penalty.
# model, jump and min_dist are directly passed to PELT
def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
    # default params in Function
    if model is None:
        model = "l1"
    if jump is None:
        jump = 5
    if min_dist is None:
        min_dist = 2
    if plotting is None:
        plotting = False
    # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
    # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
    # model = "l1"   #"l1"  # "l2", "rbf"
    algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

    if penalty is not None:
        bkps = algo.predict(pen=penalty)
        if plotting:
            fig, ax = rpt.display(signal, bkps)
            plt.show()
        return bkps

    print_error("No Penalty specified.")
    sys.exit(-1)


# calculates and returns the necessary penalty for signal. Parallel execution with num_processes many processes
# jump, min_dist are passed directly to PELT. S is directly passed to kneedle.
# pen_modifier is used as a factor on the resulting penalty.
# the interval [range_min, range_max] is used for searching.
# refresh_delay and refresh_thresh are used to configure the progress "bar".
def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50,
                            num_processes=8, refresh_delay=1, refresh_thresh=5, S=1.0,
                            pen_modifier=None, show_plots=False):
    # default params in Function
    if model is None:
        model = "l1"
    if jump is None:
        jump = 5
    if min_dist is None:
        min_dist = 2
    if range_min is None:
        range_min = 0
    if range_max is None:
        range_max = 50
    if num_processes is None:
        num_processes = 8
    if refresh_delay is None:
        refresh_delay = 1
    if refresh_thresh is None:
        refresh_thresh = 5
    if S is None:
        S = 1.0
    if pen_modifier is None:
        pen_modifier = 1
    # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
    # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
    # model = "l1"   #"l1"  # "l2", "rbf"
    algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

    ### CALC BKPS WITH DIFF PENALTYS
    if range_max != range_min:
        # building args array for parallelizing
        args = []
        # for displaying progression
        m = Manager()
        q = m.Queue()

        for i in range(range_min, range_max + 1):
            # same calculation for all except other penalty
            args.append((algo, i, q))

        print_info("starting kneepoint calculation.")
        # init Pool with num_proesses
        with Pool(min(num_processes, len(args))) as p:
            # collect results from pool
            result = p.starmap_async(get_bkps, args)
            # monitor loop
            percentage = -100  # Force display of 0%
            i = 0
            while True:
                if result.ready():
                    break

                size = q.qsize()
                last_percentage = percentage
                percentage = round(size / (range_max - range_min) * 100, 2)
                if percentage >= last_percentage + 2 or i >= refresh_thresh:
                    print_info("Current progress: " + str(percentage) + "%")
                    i = 0
                else:
                    i += 1
                time.sleep(refresh_delay)
            res = result.get()
        print_info("Finished kneepoint calculation.")
        # DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
        # split x and y coords to pass to kneedle
        pen_val = [x[0] for x in res]
        fitted_bkps_val = [x[1] for x in res]
        # # plot to look at res
        knee = find_knee_point(pen_val, fitted_bkps_val, S=S)

        # TODO: Find plateau on pen_val vs fitted_bkps_val
        #   scipy.find_peaks() does not find plateaus if they extend through the end of the data.
        #   to counter that, add one extremely large value to the right side of the data
        #   after negating it is extremely small -> Almost certainly smaller than the
        #   found plateau therefore the plateau does not extend through the border
        #   -> scipy.find_peaks finds it. Choose value from within that plateau.
        # fitted_bkps_val.append(100000000)
        # TODO: Approaching over find_peaks might not work if the initial decrease step to the
        #   "correct" number of changepoints and additional decrease steps e.g. underfitting
        #   take place within the given penalty interval. find_peak only finds plateaus
        #   of peaks. If the number of chpts decreases after the wanted plateau the condition
        #   for local peaks is not satisfied anymore. Therefore this approach will only work
        #   if the plateau extends over the right border of the penalty interval.
        # peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1)
        # Since the data is monotonously decreasing only one plateau can be found.

        # assuming the plateau is constant, i.e. no noise. OK to assume this here, since num_bkpts
        # is monotonously decreasing. If the number of bkpts decreases inside a considered
        # plateau, it means that the stable configuration is not yet met. -> Search further
        start_index = -1
        end_index = -1
        longest_start = -1
        longest_end = -1
        prev_val = -1
        for i, num_bkpts in enumerate(fitted_bkps_val[knee[0]:]):
            if num_bkpts != prev_val:
                end_index = i - 1
                if end_index - start_index > longest_end - longest_start:
                    # currently found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            if i == len(fitted_bkps_val[knee[0]:]) - 1:
                # end sequence with last value
                end_index = i
                # # since it is not guaranteed that this is the end of the plateau, assume the mid
                # # of the plateau was hit.
                # size = end_index - start_index
                # end_index = end_index + size
                # However this is not the clean solution. Better if search interval is widened
                # with range_min and range_max
                if end_index - start_index > longest_end - longest_start:
                    # last found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            prev_val = num_bkpts
        if show_plots:
            plt.xlabel('Penalty')
            plt.ylabel('Number of Changepoints')
            plt.plot(pen_val, fitted_bkps_val)
            plt.vlines(longest_start + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
            plt.vlines(longest_end + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
            plt.show()
        # choosing pen from plateau
        mid_of_plat = longest_start + (longest_end - longest_start) // 2
        knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]])

        # modify knee according to options. Defaults to 1 * knee
        knee = (knee[0] * pen_modifier, knee[1])

    else:
        # range_min == range_max. has the same effect as pen_override
        knee = (range_min, None)
    print_info(str(knee[0]) + " has been selected as penalty.")
    if knee[0] is not None:
        return knee

    print_error("With the current thresh-hold S=" + str(S)
                + " it is not possible to select a penalty value.")
    sys.exit(-1)


# calculates the raw_states for measurement measurement. num_measurement is used to identify the
# return value
# penalty, model and jump are directly passed to pelt
def calc_raw_states_func(num_measurement, measurement, penalty, model, jump):
    # extract signal
    signal = np.array(measurement['uW'])
    # norm signal to remove dependency on absolute values
    normed_signal = norm_signal(signal)
    # calculate the breakpoints
    bkpts = calc_pelt(normed_signal, penalty, model=model, jump=jump)
    calced_states = list()
    start_time = 0
    end_time = 0
    # calc metrics for all states
    for bkpt in bkpts:
        # start_time of state is end_time of previous one
        # (Transitions are instantaneous)
        start_time = end_time
        end_time = bkpt
        power_vals = signal[start_time: end_time]
        mean_power = np.mean(power_vals)
        std_dev = np.std(power_vals)
        calced_state = (start_time, end_time, mean_power, std_dev)
        calced_states.append(calced_state)
    num = 0
    new_avg_std = 0
    # calc avg std for all states from this measurement
    for s in calced_states:
        # print_info("State " + str(num) + " starts at t=" + str(s[0])
        #            + " and ends at t=" + str(s[1])
        #            + " while using " + str(s[2])
        #            + "uW with  sigma=" + str(s[3]))
        num = num + 1
        new_avg_std = new_avg_std + s[3]
    # check case if no state has been found to avoid crashing
    if len(calced_states) != 0:
        new_avg_std = new_avg_std / len(calced_states)
    else:
        new_avg_std = 0
    change_avg_std = measurement['uW_std'] - new_avg_std
    # print_info("The average standard deviation for the newly found states is "
    #            + str(new_avg_std))
    # print_info("That is a reduction of " + str(change_avg_std))
    return num_measurement, calced_states, new_avg_std, change_avg_std


# parallelize calc over all measurements
def calc_raw_states(arg_list, num_processes=8):
    m = Manager()
    with Pool(processes=min(num_processes, len(arg_list))) as p:
        # collect results from pool
        result = p.starmap(calc_raw_states_func, arg_list)
    return result


# Very short benchmark yielded approx. 3 times the speed of solution not using sort
# checks the percentiles if refinement is necessary
def needs_refinement(signal, thresh):
    sorted_signal = sorted(signal)
    length_of_signal = len(signal)
    percentile_size = int()
    percentile_size = length_of_signal // 100
    lower_percentile = sorted_signal[0:percentile_size]
    upper_percentile = sorted_signal[length_of_signal - percentile_size: length_of_signal]
    lower_percentile_mean = np.mean(lower_percentile)
    upper_percentile_mean = np.mean(upper_percentile)
    median = np.median(sorted_signal)
    dist = median - lower_percentile_mean
    if dist > thresh:
        return True
    dist = upper_percentile_mean - median
    if dist > thresh:
        return True
    return False

# helper functions for user output
# TODO: maybe switch with python logging feature
def print_info(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[INFO]" + str_prt)


def print_warning(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[WARNING]" + str_prt)


def print_error(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[ERROR]" + str_prt, file=sys.stderr)


# norms the signal and apply scaler to all values as a factor
def norm_signal(signal, scaler=25):
    max_val = max(signal)
    normed_signal = np.zeros(shape=len(signal))
    for i, signal_i in enumerate(signal):
        normed_signal[i] = signal_i / max_val
        normed_signal[i] = normed_signal[i] * scaler
    return normed_signal


# norms the values to prepare them for clustering
def norm_values_to_cluster(values_to_cluster):
    new_vals = np.array(values_to_cluster)
    num_samples = len(values_to_cluster)
    num_params = len(values_to_cluster[0])
    for i in range(num_params):
        param_vals = []
        for sample in new_vals:
            param_vals.append(sample[i])
        max_val = np.max(np.abs(param_vals))
        for num_sample, sample in enumerate(new_vals):
            values_to_cluster[num_sample][i] = sample[i] / max_val
    return new_vals


# finds state_num using state name
def get_state_num(state_name, distinct_states):
    for state_num, states in enumerate(distinct_states):
        if state_name in states:
            return state_num
    return -1


if __name__ == '__main__':
    # OPTION RECOGNITION
    opt = dict()

    optspec = (
        "filename= "
        "v "
        "model= "
        "jump= "
        "min_dist= "
        "range_min= "
        "range_max= "
        "num_processes= "
        "refresh_delay= "
        "refresh_thresh= "
        "S= "
        "pen_override= "
        "pen_modifier= "
        "plotting= "
        "refinement_thresh= "
        "cache_dicts "
        "cache_loc= "
    )
    opt_filename = None
    opt_verbose = False
    opt_model = None
    opt_jump = None
    opt_min_dist = None
    opt_range_min = None
    opt_range_max = None
    opt_num_processes = cpu_count()
    opt_refresh_delay = None
    opt_refresh_thresh = None
    opt_S = None
    opt_pen_override = None
    opt_pen_modifier = None
    opt_plotting = False
    opt_refinement_thresh = None
    opt_cache_loc = None
    try:
        raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))

        for option, parameter in raw_opts:
            optname = re.sub(r"^--", "", option)
            opt[optname] = parameter

        if 'filename' not in opt:
            print_error("No file specified!")
            sys.exit(-1)
        else:
            opt_filename = opt['filename']
        if 'v' in opt:
            opt_verbose = True
            opt_plotting = True
        if 'model' in opt:
            opt_model = opt['model']
        if 'jump' in opt:
            try:
                opt_jump = int(opt['jump'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'min_dist' in opt:
            try:
                opt_min_dist = int(opt['min_dist'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'range_min' in opt:
            try:
                opt_range_min = int(opt['range_min'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'range_max' in opt:
            try:
                opt_range_max = int(opt['range_max'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'num_processes' in opt:
            try:
                opt_num_processes = int(opt['num_processes'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refresh_delay' in opt:
            try:
                opt_refresh_delay = int(opt['refresh_delay'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refresh_thresh' in opt:
            try:
                opt_refresh_thresh = int(opt['refresh_thresh'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'S' in opt:
            try:
                opt_S = float(opt['S'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'pen_override' in opt:
            try:
                opt_pen_override = int(opt['pen_override'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'pen_modifier' in opt:
            try:
                opt_pen_modifier = float(opt['pen_modifier'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refinement_thresh' in opt:
            try:
                opt_refinement_thresh = int(opt['refinement_thresh'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'cache_dicts' in opt:
            if 'cache_loc' in opt:
                opt_cache_loc = opt['cache_loc']
            else:
                print_error("If \"cache_dicts\" is set, \"cache_loc\" must be provided.")
                sys.exit(-1)
    except getopt.GetoptError as err:
        print(err, file=sys.stderr)
        sys.exit(-1)
    filepath = os.path.dirname(opt_filename)
    # OPENING DATA
    if ".json" in opt_filename:
        # open file with trace data from json
        print_info(
            "Will only refine the state which is present in " + opt_filename + " if necessary.")
        with open(opt_filename, 'r') as f:
            configurations = json.load(f)

        # for i in range(0, 7):
        #     signal = np.array(configurations[i]['offline'][0]['uW'])
        #     plt.plot(signal)
        # plt.xlabel('Time [us]')
        # plt.ylabel('Power [mW]')
        # plt.show()
        # sys.exit()

        # resulting_sequence_list = []
        # search for param_names, by_param and by_name files
        # cachingopts
        by_param_file = None
        by_name_file = None
        param_names_file = None
        from_cache = False
        not_accurate = False
        if opt_cache_loc is not None:
            flag = False
            by_name_loc = os.path.join(opt_cache_loc, "by_name.txt")
            by_param_loc = os.path.join(opt_cache_loc, "by_param.txt")
            param_names_loc = os.path.join(opt_cache_loc, "param_names.txt")
            if os.path.isfile(by_name_loc) and os.path.getsize(by_name_loc) > 0:
                by_name_file = open(by_name_loc, "r")
            else:
                print_error("In " + opt_cache_loc + " is no by_name.txt.")
                flag = True
            if os.path.isfile(by_param_loc) and os.path.getsize(by_param_loc) > 0:
                by_param_file = open(by_param_loc, "r")
            else:
                print_error("In " + opt_cache_loc + " is no by_param.txt.")
                flag = True
            if os.path.isfile(param_names_loc) and os.path.getsize(param_names_loc) > 0:
                param_names_file = open(param_names_loc, "r")
            else:
                print_error("In " + opt_cache_loc + " is no param_names.txt.")
                flag = True
            if flag:
                print_info("The cache will be build.")
            else:
                print_warning("THE OPTION \"cache_dicts\" IS FOR DEBUGGING PURPOSES ONLY! "
                              "\nDO NOT USE FOR REGULAR APPLICATIONS!"
                              "\nThis will possibly not be maintained in further development.")
                from_cache = True
        big_state_name = configurations[0]['name']
        if None in (by_param_file, by_name_file, param_names_file):
            state_durations_by_config = []
            state_consumptions_by_config = []
            # loop through all traces check if refinement is necessary and if necessary refine it.
            for num_config, measurements_by_config in enumerate(configurations):
                # loop through all occurrences of the looked at state
                print_info("Looking at state '" + measurements_by_config['name'] + "' with params: "
                           + str(measurements_by_config['parameter']) + "(" + str(
                    num_config + 1) + "/"
                           + str(len(configurations)) + ")")
                num_needs_refine = 0
                print_info("Checking if refinement is necessary...")
                for measurement in measurements_by_config['offline']:
                    # loop through measurements of particular state
                    # an check if state needs refinement
                    signal = measurement['uW']
                    # mean = measurement['uW_mean']
                    if needs_refinement(signal, opt_refinement_thresh):
                        num_needs_refine = num_needs_refine + 1
                if num_needs_refine == 0:
                    print_info(
                        "No refinement necessary for state '" + measurements_by_config['name']
                        + "' with params: " + str(measurements_by_config['parameter']))
                elif num_needs_refine < len(measurements_by_config['offline']) / 2:
                    print_info(
                        "No refinement necessary for state '" + measurements_by_config['name']
                        + "' with params: " + str(measurements_by_config['parameter']))
                    print_warning(
                        "However this decision was not unanimously. This could hint a poor"
                        "measurement quality.")
                else:
                    if num_needs_refine != len(measurements_by_config['parameter']):
                        print_warning(
                            "However this decision was not unanimously. This could hint a poor"
                            "measurement quality.")
                    # assume that all measurements of the same param configuration are fundamentally
                    # similar -> calculate penalty for first measurement, use it for all
                    if opt_pen_override is None:
                        signal = np.array(measurements_by_config['offline'][0]['uW'])
                        normed_signal = norm_signal(signal)
                        penalty = calculate_penalty_value(normed_signal, model=opt_model,
                                                          range_min=opt_range_min,
                                                          range_max=opt_range_max,
                                                          num_processes=opt_num_processes,
                                                          jump=opt_jump, S=opt_S,
                                                          pen_modifier=opt_pen_modifier)
                        penalty = penalty[0]
                    else:
                        penalty = opt_pen_override
                    # build arguments for parallel excecution
                    print_info("Starting raw_states calculation.")
                    raw_states_calc_args = []
                    for num_measurement, measurement in enumerate(
                            measurements_by_config['offline']):
                        raw_states_calc_args.append((num_measurement, measurement, penalty,
                                                     opt_model, opt_jump))

                    raw_states_list = [None] * len(measurements_by_config['offline'])
                    raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
                    # extracting result and putting it in correct order -> index of raw_states_list
                    # entry still corresponds with index of measurement in measurements_by_states
                    # -> If measurements are discarded the used ones are easily recognized
                    for ret_val in raw_states_res:
                        num_measurement = ret_val[0]
                        raw_states = ret_val[1]
                        avg_std = ret_val[2]
                        change_avg_std = ret_val[3]
                        # FIXME: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
                        #   int sein oder nicht? Es scheint auch vernünftig zu klappen...
                        raw_states_list[num_measurement] = raw_states
                        print_info("The average standard deviation for the newly found states in "
                                   + "measurement No. " + str(num_measurement) + " is "
                                   + str(avg_std))
                        print_info("That is a reduction of " + str(change_avg_std))
                        # l_signal = measurements_by_config['offline'][num_measurement]['uW']
                        # l_bkpts = [s[1] for s in raw_states]
                        # fig, ax = rpt.display(np.array(l_signal), l_bkpts)
                        # plt.show()
                    print_info("Finished raw_states calculation.")
                    num_states_array = [int()] * len(raw_states_list)
                    i = 0
                    for i, x in enumerate(raw_states_list):
                        num_states_array[i] = len(x)
                    avg_num_states = np.mean(num_states_array)
                    num_states_dev = np.std(num_states_array)
                    print_info("On average " + str(avg_num_states)
                               + " States have been found. The standard deviation"
                               + " is " + str(num_states_dev))
                    # TODO: MAGIC NUMBER
                    if num_states_dev > 1:
                        print_warning("The number of states varies strongly across measurements."
                                      " Consider choosing a larger range for penalty detection."
                                      " It is also possible, that the processed data is not accurate"
                                      " enough to produce proper results.")
                        time.sleep(5)
                    # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
                    #   Einfach Durchschnitt nehmen?
                    #   Preliminary decision: Further on only use the traces, which have the most
                    #   frequent state count
                    counts = np.bincount(num_states_array)
                    num_raw_states = np.argmax(counts)
                    print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
                    if num_raw_states == 1:
                        print_info(
                            "Upon further inspection it is clear that no refinement is necessary."
                            " The macromodel is usable for this configuration.")
                        continue
                    # iterate through all found breakpoints and determine start and end points as well
                    # as power consumption
                    num_measurements = len(raw_states_list)
                    states_duration_list = [list()] * num_raw_states
                    states_consumption_list = [list()] * num_raw_states
                    for num_elem, _ in enumerate(states_duration_list):
                        states_duration_list[num_elem] = [0] * num_measurements
                        states_consumption_list[num_elem] = [0] * num_measurements
                    num_used_measurements = 0
                    for num_measurement, raw_states in enumerate(raw_states_list):
                        if len(raw_states) == num_raw_states:
                            num_used_measurements = num_used_measurements + 1
                            for num_state, s in enumerate(raw_states):
                                states_duration_list[num_state][num_measurement] = s[1] - s[0]
                                states_consumption_list[num_state][num_measurement] = s[2]
                            # calced_state = (start_time, end_time, mean_power, std_dev)
                            # for num_state, s in enumerate(raw_states):
                            #     state_duration = s[1] - s[0]
                            #     state_consumption = s[2]
                            #     states_duration_list[num_state] = \
                            #         states_duration_list[num_state] + state_duration
                            #     states_consumption_list[num_state] = \
                            #         states_consumption_list[num_state] + state_consumption
                        else:
                            print_info("Discarding measurement No. " + str(num_measurement)
                                       + " because it did not recognize the number of "
                                         "raw_states correctly.")
                        # l_signal = measurements_by_config['offline'][num_measurement]['uW']
                        # l_bkpts = [s[1] for s in raw_states]
                        # fig, ax = rpt.display(np.array(l_signal), l_bkpts)
                        # plt.show()
                    # for i, x in enumerate(states_duration_list):
                    #     states_duration_list[i] = x / num_used_measurements
                    # for i, x in enumerate(states_consumption_list):
                    #     states_consumption_list[i] = x / num_used_measurements
                    if num_used_measurements != len(raw_states_list):
                        if num_used_measurements / len(raw_states_list) <= 0.5:
                            print_warning("Only used " + str(num_used_measurements) + "/"
                                          + str(len(raw_states_list))
                                          + " Measurements for refinement. "
                                          + "Others did not recognize number of states correctly."
                                          + "\nYou should verify the integrity of the measurements.")
                        else:
                            print_info("Used " + str(num_used_measurements) + "/"
                                       + str(len(raw_states_list)) + " Measurements for refinement."
                                       + " Others did not recognize number of states correctly.")
                        num_used_measurements = i
                    else:
                        print_info("Used all available measurements.")

                    state_durations_by_config.append((num_config, states_duration_list))
                    state_consumptions_by_config.append((num_config, states_consumption_list))

            # combine all state durations and consumptions to parametrized model
            if len(state_durations_by_config) == 0:
                print("No refinement necessary for this state. The macromodel is usable.")
                sys.exit(1)
            if len(state_durations_by_config) / len(configurations) > 1 / 2 \
                    and len(state_durations_by_config) != len(configurations):
                print_warning(
                    "Some measurements(>50%) need to be refined, however that is not true for"
                    " all measurements. This hints a correlation between the structure of"
                    " the underlying automaton and parameters. Only the ones which need to"
                    " be refined will be refined. THE RESULT WILL NOT ACCURATELY DEPICT "
                    " THE REAL WORLD.")
                not_accurate = True
            if len(state_durations_by_config) / len(configurations) < 1 / 2:
                print_warning(
                    "Some measurements(<50%) need to be refined, however that is not true for"
                    " all measurements. This hints a correlation between the structure of"
                    " the underlying automaton and parameters. Or a poor quality of measurements."
                    " No Refinement will be done.")
                sys.exit(-1)
            # this is only necessary because at this state only linear automatons can be modeled.
            num_states_array = [int()] * len(state_consumptions_by_config)
            for i, (_, states_consumption_list) in enumerate(state_consumptions_by_config):
                num_states_array[i] = len(states_consumption_list)
            counts = np.bincount(num_states_array)
            num_raw_states = np.argmax(counts)
            usable_configs = len(state_consumptions_by_config)
            # param_list identical for each raw_state
            param_list = []
            param_names = configurations[0]['offline_aggregates']['paramkeys'][0]
            print_info("param_names: " + str(param_names))
            for num_config, states_consumption_list in state_consumptions_by_config:
                if len(states_consumption_list) != num_raw_states:
                    print_warning(
                        "Config No." + str(num_config) + " not usable yet due to different "
                        + "number of states. This hints a correlation between parameters and "
                        + "the structure of the resulting automaton. This will be possibly"
                        + " supported in a future version of this tool. HOWEVER AT THE MOMENT"
                          " THIS WILL LEAD TO INACCURATE RESULTS!")
                    not_accurate = True
                    usable_configs = usable_configs - 1
                else:
                    param_list.extend(configurations[num_config]['offline_aggregates']['param'])
            print_info("param_list: " + str(param_list))

            if usable_configs == len(state_consumptions_by_config):
                print_info("All configs usable.")
            else:
                print_info("Using only " + str(usable_configs) + " Configs.")
            # build by_name
            by_name = {}
            usable_configs_2 = len(state_consumptions_by_config)
            for i in range(num_raw_states):
                consumptions_for_state = []
                durations_for_state = []
                for j, (_, states_consumption_list) in enumerate(state_consumptions_by_config):
                    if len(states_consumption_list) == num_raw_states:
                        consumptions_for_state.extend(states_consumption_list[i])
                        durations_for_state.extend(state_durations_by_config[j][1][i])
                    else:
                        not_accurate = True
                        usable_configs_2 = usable_configs_2 - 1
                if usable_configs_2 != usable_configs:
                    print_error("an zwei unterschiedlichen Stellen wurden unterschiedlich viele "
                                "Messungen rausgeworfen. Bei Janis beschweren.")
                state_name = "state_" + str(i)
                state_dict = {
                    "param": param_list,
                    "power": consumptions_for_state,
                    "duration": durations_for_state,
                    "attributes": ["power", "duration"],
                    # Da kein "richtiger" Automat generiert wird, gibt es auch keine Transitionen
                    "isa": "state"
                }
                by_name[state_name] = state_dict
            by_param = by_name_to_by_param(by_name)
            if opt_cache_loc is not None:
                by_name_loc = os.path.join(opt_cache_loc, "by_name.txt")
                by_param_loc = os.path.join(opt_cache_loc, "by_param.txt")
                param_names_loc = os.path.join(opt_cache_loc, "param_names.txt")
                f = open(by_name_loc, "w")
                f.write(str(by_name))
                f.close()
                f = open(by_param_loc, "w")
                f.write(str(by_param))
                f.close()
                f = open(param_names_loc, "w")
                f.write(str(param_names))
                f.close()
        else:
            by_name_text = str(by_name_file.read())
            by_name = eval(by_name_text)
            by_param_text = str(by_param_file.read())
            by_param = eval(by_param_text)
            param_names_text = str(param_names_file.read())
            param_names = eval(param_names_text)

        # t = 0
        # last_pow = 0
        # for key in by_name.keys():
        #     end_t = t + np.mean(by_name[key]["duration"])
        #     power = np.mean(by_name[key]["power"])
        #     plt.vlines(t, min(last_pow, power), max(last_pow, power))
        #     plt.hlines(power, t, end_t)
        #     t = end_t
        #     last_pow = power
        # plt.show()
        stats = parameters.ParamStats(by_name, by_param, param_names, dict())
        paramfit = ParallelParamFit(by_param)
        for state_name in by_name.keys():
            for num_param, param_name in enumerate(param_names):
                if stats.depends_on_param(state_name, "power", param_name):
                    paramfit.enqueue(state_name, "power", num_param, param_name)
                if stats.depends_on_param(state_name, "duration", param_name):
                    paramfit.enqueue(state_name, "duration", num_param, param_name)
                print_info("State " + state_name + "s power depends on param " + param_name + ":" +
                           str(stats.depends_on_param(state_name, "power", param_name))
                           )
                print_info("State " + state_name + "s duration depends on param " + param_name + ":"
                           + str(stats.depends_on_param(state_name, "duration", param_name))
                           )
        paramfit.fit()
        fit_res_dur_dict = {}
        fit_res_pow_dict = {}
        # fit functions and check if successful
        for state_name in by_name.keys():
            fit_power = paramfit.get_result(state_name, "power")
            fit_duration = paramfit.get_result(state_name, "duration")
            combined_fit_power = analytic.function_powerset(fit_power, param_names, 0)
            combined_fit_duration = analytic.function_powerset(fit_duration, param_names, 0)
            combined_fit_power.fit(by_param, state_name, "power")
            if not combined_fit_power.fit_success:
                print_warning("Fitting(power) for state " + state_name + " was not succesful!")
            combined_fit_duration.fit(by_param, state_name, "duration")
            if not combined_fit_duration.fit_success:
                print_warning("Fitting(duration) for state " + state_name + " was not succesful!")
            fit_res_pow_dict[state_name] = combined_fit_power
            fit_res_dur_dict[state_name] = combined_fit_duration
        # only raw_states with the same number of function parameters can be similar
        num_param_pow_dict = {}
        num_param_dur_dict = {}
        # print found substate_results
        for state_name in by_name.keys():
            model_function = str(fit_res_pow_dict[state_name].model_function)
            model_args = fit_res_pow_dict[state_name].model_args
            num_param_pow_dict[state_name] = len(model_args)
            for num_arg, arg in enumerate(model_args):
                replace_string = "regression_arg(" + str(num_arg) + ")"
                model_function = model_function.replace(replace_string, str(arg))
            print_info("Power-Function for state " + state_name + ": "
                       + model_function)
        for state_name in by_name.keys():
            model_function = str(fit_res_dur_dict[state_name].model_function)
            model_args = fit_res_dur_dict[state_name].model_args
            num_param_dur_dict[state_name] = len(model_args)
            for num_arg, arg in enumerate(model_args):
                replace_string = "regression_arg(" + str(num_arg) + ")"
                model_function = model_function.replace(replace_string, str(arg))
            print_info("Duration-Function for state " + state_name + ": "
                       + model_function)
        # sort states in buckets for clustering
        similar_raw_state_buckets = {}
        for state_name in by_name.keys():
            pow_model_function = str(fit_res_pow_dict[state_name].model_function)
            dur_model_function = str(fit_res_dur_dict[state_name].model_function)
            key_tuple = (pow_model_function, dur_model_function)
            if key_tuple not in similar_raw_state_buckets:
                similar_raw_state_buckets[key_tuple] = []
            similar_raw_state_buckets[key_tuple].append(state_name)

        # cluster for each Key-Tuple using the function parameters
        distinct_states = []
        for key_tuple in similar_raw_state_buckets.keys():
            print_info("Key-Tuple " + str(key_tuple) + ": "
                       + str(similar_raw_state_buckets[key_tuple]))
            similar_states = similar_raw_state_buckets[key_tuple]
            if len(similar_states) > 1:
                # only necessary to cluster if more than one raw_state has the same function
                # configuration
                # functions are identical -> num_params and used params are identical
                num_params = num_param_dur_dict[similar_states[0]] + num_param_pow_dict[
                    similar_states[0]]
                values_to_cluster = np.zeros((len(similar_states), num_params))
                for num_state, state_name in enumerate(similar_states):
                    dur_params = fit_res_dur_dict[state_name].model_args
                    pow_params = fit_res_pow_dict[state_name].model_args
                    j = 0
                    for param in pow_params:
                        values_to_cluster[num_state][j] = param
                        j = j + 1
                    for param in dur_params:
                        values_to_cluster[num_state][j] = param
                        j = j + 1
                normed_vals_to_cluster = norm_values_to_cluster(values_to_cluster)
                cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True,
                                                  affinity='euclidean',
                                                  linkage='ward',
                                                  # TODO: Magic Number. Beim Evaluieren finetunen
                                                  distance_threshold=1)
                cluster.fit_predict(values_to_cluster)
                cluster_labels = cluster.labels_
                print_info("Cluster labels:\n" + str(cluster_labels))
                if cluster.n_clusters_ > 1:
                    # more than one distinct state found -> seperation of raw_states necessary
                    distinct_state_dict = {}
                    for num_state, label in enumerate(cluster_labels):
                        if label not in distinct_state_dict.keys():
                            distinct_state_dict[label] = []
                        distinct_state_dict[label].append(similar_states[num_state])
                    for distinct_state_key in distinct_state_dict.keys():
                        distinct_states.append(distinct_state_dict[distinct_state_key])
                else:
                    # all raw_states make up this state
                    distinct_states.append(similar_states)
            else:
                distinct_states.append(similar_states)
        for num_state, distinct_state in enumerate(distinct_states):
            print("State " + str(num_state) + ": " + str(distinct_state))
        num_raw_states = len(by_name.keys())
        resulting_sequence = [int] * num_raw_states
        for i in range(num_raw_states):
            # apply the projection from raw_states to states
            state_name = "state_" + str(i)
            state_num = get_state_num(state_name, distinct_states)
            if state_num == -1:
                print_error("Critical Error when creating the resulting sequence. raw_state state_"
                            + str(i) + " could not be mapped to a state.")
                sys.exit(-1)
            resulting_sequence[i] = state_num
        print("Resulting sequence is: " + str(resulting_sequence))
        # if from_cache:
        #     print_warning(
        #         "YOU USED THE OPTION \"cache_dicts\". THIS IS FOR DEBUGGING PURPOSES ONLY!"
        #         "\nTHE SCRIPT WILL NOW STOP PREMATURELY,"
        #         "SINCE DATA FOR FURTHER COMPUTATION IS MISSING!")
        #     sys.exit(0)
        # parameterize all new states
        new_by_name = {}
        for num_state, distinct_state in enumerate(distinct_states):
            state_name = "State_" + str(num_state)
            consumptions_for_state = []
            durations_for_state = []
            param_list = []
            for raw_state in distinct_state:
                original_state_dict = by_name[raw_state]
                param_list.extend(original_state_dict["param"])
                consumptions_for_state.extend(original_state_dict["power"])
                durations_for_state.extend(original_state_dict["duration"])
            new_state_dict = {
                "param": param_list,
                "power": consumptions_for_state,
                "duration": durations_for_state,
                "attributes": ["power", "duration"],
                # Da kein richtiger Automat generiert wird, gibt es auch keine Transitionen
                "isa": "state"
            }
            new_by_name[state_name] = new_state_dict
        new_by_param = by_name_to_by_param(new_by_name)
        new_stats = parameters.ParamStats(new_by_name, new_by_param, param_names, dict())
        new_paramfit = ParallelParamFit(new_by_param)
        for state_name in new_by_name.keys():
            for num_param, param_name in enumerate(param_names):
                if new_stats.depends_on_param(state_name, "power", param_name):
                    new_paramfit.enqueue(state_name, "power", num_param, param_name)
                if new_stats.depends_on_param(state_name, "duration", param_name):
                    new_paramfit.enqueue(state_name, "duration", num_param, param_name)
                print_info("State " + state_name + "s power depends on param " + param_name + ":" +
                           str(new_stats.depends_on_param(state_name, "power", param_name))
                           )
                print_info("State " + state_name + "s duration depends on param " + param_name + ":"
                           + str(new_stats.depends_on_param(state_name, "duration", param_name))
                           )
        new_paramfit.fit()
        new_fit_res_dur_dict = {}
        new_fit_res_pow_dict = {}
        for state_name in new_by_name.keys():
            fit_power = new_paramfit.get_result(state_name, "power")
            fit_duration = new_paramfit.get_result(state_name, "duration")
            combined_fit_power = analytic.function_powerset(fit_power, param_names, 0)
            combined_fit_duration = analytic.function_powerset(fit_duration, param_names, 0)
            combined_fit_power.fit(new_by_param, state_name, "power")
            if not combined_fit_power.fit_success:
                print_warning("Fitting(power) for state " + state_name + " was not succesful!")
            combined_fit_duration.fit(new_by_param, state_name, "duration")
            if not combined_fit_duration.fit_success:
                print_warning("Fitting(duration) for state " + state_name + " was not succesful!")
            new_fit_res_pow_dict[state_name] = combined_fit_power
            new_fit_res_dur_dict[state_name] = combined_fit_duration
        # output results
        result_loc = os.path.join(filepath, "result" + big_state_name + ".txt")
        with open(result_loc, "w") as f:
            f.write("Resulting Sequence: " + str(resulting_sequence))
            f.write("\n\n")
            for state_name in new_by_name.keys():
                model_function = str(new_fit_res_pow_dict[state_name].model_function)
                model_args = new_fit_res_pow_dict[state_name].model_args
                for num_arg, arg in enumerate(model_args):
                    replace_string = "regression_arg(" + str(num_arg) + ")"
                    model_function = model_function.replace(replace_string, str(arg))
                print("Power-Function for state " + state_name + ": "
                      + model_function)
                f.write("Power-Function for state " + state_name + ": "
                        + model_function + "\n")
            f.write("\n\n")
            for state_name in new_by_name.keys():
                model_function = str(new_fit_res_dur_dict[state_name].model_function)
                model_args = new_fit_res_dur_dict[state_name].model_args
                for num_arg, arg in enumerate(model_args):
                    replace_string = "regression_arg(" + str(num_arg) + ")"
                    model_function = model_function.replace(replace_string, str(arg))
                print("Duration-Function for state " + state_name + ": "
                      + model_function)
                f.write("Duration-Function for state " + state_name + ": "
                        + model_function + "\n")
            if not_accurate:
                print_warning(
                    "THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
                    " WHY.")
                f.write("THIS RESULT IS NOT ACCURATE. SEE WARNINGLOG TO GET A BETTER UNDERSTANDING"
                        " WHY.")

    #         Removed clustering at this point, since it provided too much difficulties
    #           at the current state. Clustering is still used, but at another point of execution.
    #           Now parametrization is done first. raw_states are grouped by their using a dict
    #           where the key is [power_function, duration_dunction]. Then all raw_states from
    #           each bucket are clustered by their parameters
    #         i = 0
    #         cluster_labels_list = []
    #         num_cluster_list = []
    #         for num_trace, raw_states in enumerate(raw_states_list):
    #             # iterate through raw states from measurements
    #             if len(raw_states) == num_raw_states:
    #                 # build array with power values to cluster these
    #                 value_to_cluster = np.zeros((num_raw_states, 2))
    #                 j = 0
    #                 for s in raw_states:
    #                     value_to_cluster[j][0] = s[2]
    #                     value_to_cluster[j][1] = 0
    #                     j = j + 1
    #                 # linked = linkage(value_to_cluster, 'single')
    #                 #
    #                 # labelList = range(1, 11)
    #                 #
    #                 # plt.figure(figsize=(10, 7))
    #                 # dendrogram(linked,
    #                 #            orientation='top',
    #                 #            distance_sort='descending',
    #                 #            show_leaf_counts=True)
    #                 # plt.show()
    #                 # TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER
    #                 #   im distance_threshold
    #                 cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True,
    #                                                   affinity='euclidean',
    #                                                   linkage='ward',
    #                                                   distance_threshold=opt_refinement_thresh * 100)
    #                 # cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
    #                 #                                   linkage='ward')
    #                 cluster.fit_predict(value_to_cluster)
    #                 # print_info("Cluster labels:\n" + str(cluster.labels_))
    #                 # plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
    #                 # plt.show()
    #                 cluster_labels_list.append((num_trace, cluster.labels_))
    #                 num_cluster_list.append((num_trace, cluster.n_clusters_))
    #                 i = i + 1
    #             else:
    #                 print_info("Discarding measurement No. " + str(num_trace) + " because it "
    #                            + "did not recognize the number of raw_states correctly.")
    #         num_used_measurements = len(raw_states_list)
    #         if i != len(raw_states_list):
    #             if i / len(raw_states_list) <= 0.5:
    #                 print_warning("Only used " + str(i) + "/" + str(len(raw_states_list))
    #                               + " Measurements for refinement. "
    #                                 "Others did not recognize number of states correctly."
    #                                 "\nYou should verify the integrity of the measurements.")
    #             else:
    #                 print_info("Used " + str(i) + "/" + str(len(raw_states_list))
    #                            + " Measurements for refinement. "
    #                              "Others did not recognize number of states correctly.")
    #             num_used_measurements = i
    #             # TODO: DEBUG Kram
    #             sys.exit(0)
    #         else:
    #             print_info("Used all available measurements.")
    #
    #         num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list]))
    #         avg_per_state_list = [None] * len(cluster_labels_list)
    #         used_clusters = 0
    #         for number, (num_trace, labels) in enumerate(cluster_labels_list):
    #             if num_cluster_list[number][1] == num_states:
    #                 avg_per_state = [0] * num_states
    #                 count_per_state = [0] * num_states
    #                 raw_states = raw_states_list[num_trace]
    #                 for num_label, label in enumerate(labels):
    #                     count_per_state[label] = count_per_state[label] + 1
    #                     avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
    #                 for i, _ in enumerate(avg_per_state):
    #                     avg_per_state[i] = avg_per_state[i] / count_per_state[i]
    #                 avg_per_state_list[number] = avg_per_state
    #                 used_clusters = used_clusters + 1
    #             else:
    #                 # hopefully this does not happen regularly
    #                 print_info("Discarding measurement " + str(number)
    #                            + " because the clustering yielded not matching results.")
    #                 num_used_measurements = num_used_measurements - 1
    #         if num_used_measurements == 0:
    #             print_error("Something went terribly wrong. Discarded all measurements.")
    #             # continue
    #             sys.exit(-1)
    #         # flattend version for clustering:
    #         values_to_cluster = np.zeros((num_states * used_clusters, 2))
    #         index = 0
    #         for avg_per_state in avg_per_state_list:
    #             if avg_per_state is not None:
    #                 for avg in avg_per_state:
    #                     values_to_cluster[index][0] = avg
    #                     values_to_cluster[index][1] = 0
    #                     index = index + 1
    #         # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1])
    #         # plt.show()
    #         cluster = AgglomerativeClustering(n_clusters=num_states)
    #         cluster.fit_predict(values_to_cluster)
    #         # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
    #         # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
    #         # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
    #         # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
    #         new_labels_list = []
    #         new_labels = []
    #         i = 0
    #         for label in cluster.labels_:
    #             new_labels.append(label)
    #             i = i + 1
    #             if i == num_states:
    #                 new_labels_list.append(new_labels)
    #                 new_labels = []
    #                 i = 0
    #         # only the selected measurements are present in new_labels.
    #         # new_labels_index should not be incremented, if not selected_measurement is skipped
    #         new_labels_index = 0
    #         # cluster_labels_list contains all measurements -> if measurement is skipped
    #         # still increment the index
    #         index = 0
    #         for elem in avg_per_state_list:
    #             if elem is not None:
    #                 for number, label in enumerate(cluster_labels_list[index][1]):
    #                     cluster_labels_list[index][1][number] = \
    #                         new_labels_list[new_labels_index][label]
    #                 new_labels_index = new_labels_index + 1
    #             else:
    #                 # override not selected measurement labels to avoid choosing the wrong ones.
    #                 for number, label in enumerate(cluster_labels_list[index][1]):
    #                     cluster_labels_list[index][1][number] = -1
    #             index = index + 1
    #         resulting_sequence = [None] * num_raw_states
    #         i = 0
    #         confidence = 0
    #         for x in resulting_sequence:
    #             j = 0
    #             test_list = []
    #             for arr in [elem[1] for elem in cluster_labels_list]:
    #                 if num_cluster_list[j][1] != num_states:
    #                     j = j + 1
    #                 else:
    #                     if -1 in arr:
    #                         print_error("Bei Janis beschweren! Fehler beim Umbenennen der"
    #                                     " Zustände wahrscheinlich.")
    #                         sys.exit(-1)
    #                     test_list.append(arr[i])
    #                     j = j + 1
    #             bincount = np.bincount(test_list)
    #             resulting_sequence[i] = np.argmax(bincount)
    #             confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount)
    #             i = i + 1
    #         confidence = confidence / len(resulting_sequence)
    #         print_info("Confidence of resulting sequence is " + str(confidence)
    #                    + " while using " + str(num_used_measurements) + "/"
    #                    + str(len(raw_states_list)) + " measurements.")
    #         #print(resulting_sequence)
    #         resulting_sequence_list.append((num_config, resulting_sequence))
    # # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
    # #   erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
    # #   Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen
    # #   auftreten.
    # # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw.
    # #   hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem:
    # #   wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
    # #   Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
    # #   2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
    # #   Zustands ja nicht mehr ändern. Kann sicherlich immernoch Falschclustering erzeugen...
    # for num_config, sequence in resulting_sequence_list:
    #     print_info("NO. config:" + str(num_config))
    #     print_info(sequence)
    #
    #
    #
    #

    elif ".tar" in opt_filename:
        # open with dfatool
        raw_data_args = list()
        raw_data_args.append(opt_filename)
        raw_data = RawData(
            raw_data_args, with_traces=True
        )
        print_info("Preprocessing file. Depending on its size, this could take a while.")
        preprocessed_data = raw_data.get_preprocessed_data()
        print_info("File fully preprocessed")
        # TODO: Mal schauen, wie ich das mache. Erstmal nur mit json. Ist erstmal raus. Wird nicht
        #   umgesetzt.
        print_error("Not implemented yet. Please generate .json files first with dfatool and use"
                    " those.")
    else:
        print_error("Unknown dataformat")
        sys.exit(-1)