summaryrefslogtreecommitdiff
path: root/bin/Proof_Of_Concept_PELT.py
blob: 0d5be54967125769c093bcf1e51ac654223fcb14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
import json
import time
import sys
import getopt
import re
from multiprocessing import Pool, Manager, cpu_count
from kneed import KneeLocator
from sklearn.cluster import AgglomerativeClustering
import matplotlib.pyplot as plt
import ruptures as rpt
import numpy as np
from dfatool.dfatool import RawData


# from scipy.cluster.hierarchy import dendrogram, linkage # for graphical display

# py bin\Proof_Of_Concept_PELT.py --filename="..\data\TX.json" --jump=1 --pen_override=10 --refinement_thresh=100


def plot_data_from_json(filename, trace_num, x_axis, y_axis):
    with open(filename, 'r') as file:
        tx_data = json.load(file)
    print(tx_data[trace_num]['parameter'])
    plt.plot(tx_data[trace_num]['offline'][0]['uW'])
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


def plot_data_vs_mean(signal, x_axis, y_axis):
    plt.plot(signal)
    average = np.mean(signal)
    plt.hlines(average, 0, len(signal))
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


def plot_data_vs_data_vs_means(signal1, signal2, x_axis, y_axis):
    plt.plot(signal1)
    lens = max(len(signal1), len(signal2))
    average = np.mean(signal1)
    plt.hlines(average, 0, lens, color='red')
    plt.vlines(len(signal1), 0, 100000, color='red', linestyles='dashed')
    plt.plot(signal2)
    average = np.mean(signal2)
    plt.hlines(average, 0, lens, color='green')
    plt.vlines(len(signal2), 0, 100000, color='green', linestyles='dashed')
    plt.xlabel(x_axis)
    plt.ylabel(y_axis)
    plt.show()


def get_bkps(algo, pen, q):
    res = pen, len(algo.predict(pen=pen))
    q.put(pen)
    return res


def find_knee_point(data_x, data_y, S=1.0, curve='convex', direction='decreasing'):
    kneedle = KneeLocator(data_x, data_y, S=S, curve=curve, direction=direction)
    kneepoint = (kneedle.knee, kneedle.knee_y)
    return kneepoint


def calc_pelt(signal, penalty, model="l1", jump=5, min_dist=2, plotting=False):
    # default params in Function
    if model is None:
        model = "l1"
    if jump is None:
        jump = 5
    if min_dist is None:
        min_dist = 2
    if plotting is None:
        plotting = False
    # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
    # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
    # model = "l1"   #"l1"  # "l2", "rbf"
    algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

    if penalty is not None:
        bkps = algo.predict(pen=penalty)
        if plotting:
            fig, ax = rpt.display(signal, bkps)
            plt.show()
        return bkps

    print_error("No Penalty specified.")
    sys.exit(-1)


def calculate_penalty_value(signal, model="l1", jump=5, min_dist=2, range_min=0, range_max=50,
                            num_processes=8, refresh_delay=1, refresh_thresh=5, S=1.0,
                            pen_modifier=None):
    # default params in Function
    if model is None:
        model = "l1"
    if jump is None:
        jump = 5
    if min_dist is None:
        min_dist = 2
    if range_min is None:
        range_min = 0
    if range_max is None:
        range_max = 50
    if num_processes is None:
        num_processes = 8
    if refresh_delay is None:
        refresh_delay = 1
    if refresh_thresh is None:
        refresh_thresh = 5
    if S is None:
        S = 1.0
    if pen_modifier is None:
        pen_modifier = 1
    # change point detection. best fit seemingly with l1. rbf prods. RuntimeErr for pen > 30
    # https://ctruong.perso.math.cnrs.fr/ruptures-docs/build/html/costs/index.html
    # model = "l1"   #"l1"  # "l2", "rbf"
    algo = rpt.Pelt(model=model, jump=jump, min_size=min_dist).fit(signal)

    ### CALC BKPS WITH DIFF PENALTYS
    if range_max != range_min:
        # building args array for parallelizing
        args = []
        # for displaying progression
        m = Manager()
        q = m.Queue()

        for i in range(range_min, range_max + 1):
            args.append((algo, i, q))

        print_info("starting kneepoint calculation.")
        # init Pool with num_proesses
        with Pool(num_processes) as p:
            # collect results from pool
            result = p.starmap_async(get_bkps, args)
            # monitor loop
            percentage = -100  # Force display of 0%
            i = 0
            while True:
                if result.ready():
                    break

                size = q.qsize()
                last_percentage = percentage
                percentage = round(size / (range_max - range_min) * 100, 2)
                if percentage >= last_percentage + 2 or i >= refresh_thresh:
                    print_info("Current progress: " + str(percentage) + "%")
                    i = 0
                else:
                    i += 1
                time.sleep(refresh_delay)
            res = result.get()
        print_info("Finished kneepoint calculation.")
        # DECIDE WHICH PENALTY VALUE TO CHOOSE ACCORDING TO ELBOW/KNEE APPROACH
        # split x and y coords to pass to kneedle
        pen_val = [x[0] for x in res]
        fitted_bkps_val = [x[1] for x in res]
        # # plot to look at res
        knee = find_knee_point(pen_val, fitted_bkps_val, S=S)

        # TODO: Find plateau on pen_val vs fitted_bkps_val
        # scipy.find_peaks() does not find plateaus if they extend through the end of the data.
        # to counter that, add one extremely large value to the right side of the data
        # after negating it is extremely small -> Almost certainly smaller than the
        # found plateau therefore the plateau does not extend through the border -> scipy.find_peaks
        # finds it. Choose value from within that plateau.
        # fitted_bkps_val.append(100000000)
        # TODO: Approaching over find_peaks might not work if the initial decrease step to the
        #   "correct" number of changepoints and additional decrease steps e.g. underfitting
        #   take place within the given penalty interval. find_peak only finds plateaus
        #   of peaks. If the number of chpts decreases after the wanted plateau the condition
        #   for local peaks is not satisfied anymore. Therefore this approach will only work
        #   if the plateau extends over the right border of the penalty interval.
        # peaks, peak_plateaus = find_peaks(- np.array(fitted_bkps_val), plateau_size=1)
        # Since the data is monotonously decreasing only one plateau can be found.

        # assuming the plateau is constant
        start_index = -1
        end_index = -1
        longest_start = -1
        longest_end = -1
        prev_val = -1
        for i, num_bkpts in enumerate(fitted_bkps_val[knee[0]:]):
            if num_bkpts != prev_val:
                end_index = i - 1
                if end_index - start_index > longest_end - longest_start:
                    # currently found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            if i == len(fitted_bkps_val[knee[0]:]) - 1:
                # end sequence with last value
                end_index = i
                if end_index - start_index > longest_end - longest_start:
                    # last found sequence is the longest found yet
                    longest_start = start_index
                    longest_end = end_index
                start_index = i
            prev_val = num_bkpts
        # plt.xlabel('Penalty')
        # plt.ylabel('Number of Changepoints')
        # plt.plot(pen_val, fitted_bkps_val)
        # plt.vlines(longest_start + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
        # plt.vlines(longest_end + knee[0], 0, max(fitted_bkps_val), linestyles='dashed')
        # plt.show()
        # choosing pen from plateau
        mid_of_plat = longest_start + (longest_end - longest_start) // 2
        knee = (mid_of_plat + knee[0], fitted_bkps_val[mid_of_plat + knee[0]])

        # modify knee according to options. Defaults to 1 * knee
        knee = (knee[0] * pen_modifier, knee[1])

    else:
        # range_min == range_max. has the same effect as pen_override
        knee = (range_min, None)
    print_info(str(knee[0]) + " has been selected as kneepoint.")
    if knee[0] is not None:
        return knee

    print_error("With the current thresh-hold S=" + str(S)
                + " it is not possible to select a penalty value.")
    sys.exit(-1)


# very short benchmark yielded approx. 1/3 of speed compared to solution with sorting
# def needs_refinement_no_sort(signal, mean, thresh):
#     # linear search for the top 10%/ bottom 10%
#     # should be sufficient
#     length_of_signal = len(signal)
#     percentile_size = int()
#     percentile_size = length_of_signal // 100
#     upper_percentile = [None] * percentile_size
#     lower_percentile = [None] * percentile_size
#     fill_index_upper = percentile_size - 1
#     fill_index_lower = percentile_size - 1
#     index_smallest_val = fill_index_upper
#     index_largest_val = fill_index_lower
#
#     for x in signal:
#         if x > mean:
#             # will be in upper percentile
#             if fill_index_upper >= 0:
#                 upper_percentile[fill_index_upper] = x
#                 if x < upper_percentile[index_smallest_val]:
#                     index_smallest_val = fill_index_upper
#                 fill_index_upper = fill_index_upper - 1
#                 continue
#
#             if x > upper_percentile[index_smallest_val]:
#                 # replace smallest val. Find next smallest val
#                 upper_percentile[index_smallest_val] = x
#                 index_smallest_val = 0
#                 i = 0
#                 for y in upper_percentile:
#                     if upper_percentile[i] < upper_percentile[index_smallest_val]:
#                         index_smallest_val = i
#                     i = i + 1
#
#         else:
#             if fill_index_lower >= 0:
#                 lower_percentile[fill_index_lower] = x
#                 if x > lower_percentile[index_largest_val]:
#                     index_largest_val = fill_index_upper
#                 fill_index_lower = fill_index_lower - 1
#                 continue
#             if x < lower_percentile[index_largest_val]:
#                 # replace smallest val. Find next smallest val
#                 lower_percentile[index_largest_val] = x
#                 index_largest_val = 0
#                 i = 0
#                 for y in lower_percentile:
#                     if lower_percentile[i] > lower_percentile[index_largest_val]:
#                         index_largest_val = i
#                     i = i + 1
#
#     # should have the percentiles
#     lower_percentile_mean = np.mean(lower_percentile)
#     upper_percentile_mean = np.mean(upper_percentile)
#     dist = mean - lower_percentile_mean
#     if dist > thresh:
#         return True
#     dist = upper_percentile_mean - mean
#     if dist > thresh:
#         return True
#     return False


# raw_states_calc_args.append((num_measurement, measurement, penalty, opt_model
#                                                  , opt_jump))
def calc_raw_states_func(num_trace, measurement, penalty, model, jump):
    signal = np.array(measurement['uW'])
    normed_signal = norm_signal(signal)
    bkpts = calc_pelt(normed_signal, penalty, model=model, jump=jump)
    calced_states = list()
    start_time = 0
    end_time = 0
    for bkpt in bkpts:
        # start_time of state is end_time of previous one
        # (Transitions are instantaneous)
        start_time = end_time
        end_time = bkpt
        power_vals = signal[start_time: end_time]
        mean_power = np.mean(power_vals)
        std_dev = np.std(power_vals)
        calced_state = (start_time, end_time, mean_power, std_dev)
        calced_states.append(calced_state)
    num = 0
    new_avg_std = 0
    for s in calced_states:
        # print_info("State " + str(num) + " starts at t=" + str(s[0])
        #            + " and ends at t=" + str(s[1])
        #            + " while using " + str(s[2])
        #            + "uW with  sigma=" + str(s[3]))
        num = num + 1
        new_avg_std = new_avg_std + s[3]
    new_avg_std = new_avg_std / len(calced_states)
    change_avg_std = measurement['uW_std'] - new_avg_std
    # print_info("The average standard deviation for the newly found states is "
    #            + str(new_avg_std))
    # print_info("That is a reduction of " + str(change_avg_std))
    return num_trace, calced_states, new_avg_std, change_avg_std


def calc_raw_states(arg_list, num_processes=8):
    m = Manager()
    with Pool(processes=num_processes) as p:
        # collect results from pool
        result = p.starmap(calc_raw_states_func, arg_list)
    return result


# Very short benchmark yielded approx. 3 times the speed of solution not using sort
# TODO: Decide whether median is really the better baseline than mean
def needs_refinement(signal, thresh):
    sorted_signal = sorted(signal)
    length_of_signal = len(signal)
    percentile_size = int()
    percentile_size = length_of_signal // 100
    lower_percentile = sorted_signal[0:percentile_size]
    upper_percentile = sorted_signal[length_of_signal - percentile_size: length_of_signal]
    lower_percentile_mean = np.mean(lower_percentile)
    upper_percentile_mean = np.mean(upper_percentile)
    median = np.median(sorted_signal)
    dist = median - lower_percentile_mean
    if dist > thresh:
        return True
    dist = upper_percentile_mean - median
    if dist > thresh:
        return True
    return False


def print_info(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[INFO]" + str_prt)


def print_warning(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[WARNING]" + str_prt)


def print_error(str_to_prt):
    str_lst = str_to_prt.split(sep='\n')
    for str_prt in str_lst:
        print("[ERROR]" + str_prt, file=sys.stderr)


def norm_signal(signal):
    # TODO: maybe refine normalisation of signal
    normed_signal = np.zeros(shape=len(signal))
    for i, signal_i in enumerate(signal):
        normed_signal[i] = signal_i / 1000
    return normed_signal


if __name__ == '__main__':
    # OPTION RECOGNITION
    opt = dict()

    optspec = (
        "filename= "
        "v "
        "model= "
        "jump= "
        "min_dist= "
        "range_min= "
        "range_max= "
        "num_processes= "
        "refresh_delay= "
        "refresh_thresh= "
        "S= "
        "pen_override= "
        "pen_modifier= "
        "plotting= "
        "refinement_thresh= "
    )
    opt_filename = None
    opt_verbose = False
    opt_model = None
    opt_jump = None
    opt_min_dist = None
    opt_range_min = None
    opt_range_max = None
    opt_num_processes = cpu_count()
    opt_refresh_delay = None
    opt_refresh_thresh = None
    opt_S = None
    opt_pen_override = None
    opt_pen_modifier = None
    opt_plotting = False
    opt_refinement_thresh = None
    try:
        raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(" "))

        for option, parameter in raw_opts:
            optname = re.sub(r"^--", "", option)
            opt[optname] = parameter

        if 'filename' not in opt:
            print_error("No file specified!")
            sys.exit(-1)
        else:
            opt_filename = opt['filename']
        if 'v' in opt:
            opt_verbose = True
            opt_plotting = True
        if 'model' in opt:
            opt_model = opt['model']
        if 'jump' in opt:
            try:
                opt_jump = int(opt['jump'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'min_dist' in opt:
            try:
                opt_min_dist = int(opt['min_dist'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'range_min' in opt:
            try:
                opt_range_min = int(opt['range_min'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'range_max' in opt:
            try:
                opt_range_max = int(opt['range_max'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'num_processes' in opt:
            try:
                opt_num_processes = int(opt['num_processes'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refresh_delay' in opt:
            try:
                opt_refresh_delay = int(opt['refresh_delay'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refresh_thresh' in opt:
            try:
                opt_refresh_thresh = int(opt['refresh_thresh'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'S' in opt:
            try:
                opt_S = float(opt['S'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'pen_override' in opt:
            try:
                opt_pen_override = int(opt['pen_override'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'pen_modifier' in opt:
            try:
                opt_pen_modifier = float(opt['pen_modifier'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
        if 'refinement_thresh' in opt:
            try:
                opt_refinement_thresh = int(opt['refinement_thresh'])
            except ValueError as verr:
                print(verr, file=sys.stderr)
                sys.exit(-1)
    except getopt.GetoptError as err:
        print(err, file=sys.stderr)
        sys.exit(-1)

    # OPENING DATA
    if ".json" in opt_filename:
        # open file with trace data from json
        print_info(
            "Will only refine the state which is present in " + opt_filename + " if necessary.")
        with open(opt_filename, 'r') as f:
            configurations = json.load(f)
        # loop through all traces check if refinement is necessary
        resulting_sequence_list = []
        for num_config, measurements_by_configuration in enumerate(configurations):
            # loop through all occurrences of the looked at state
            print_info("Looking at state '" + measurements_by_configuration['name'] + "' with params: "
                       + str(measurements_by_configuration['parameter']))
            refine = False
            print_info("Checking if refinement is necessary...")
            for measurement in measurements_by_configuration['offline']:
                # loop through measurements of particular state
                # an check if state needs refinement
                signal = measurement['uW']
                # mean = measurement['uW_mean']
                # TODO: Decide if median is really the better baseline than mean
                if needs_refinement(signal, opt_refinement_thresh) and not refine:
                    print_info("Refinement is necessary!")
                    refine = True
            if not refine:
                print_info("No refinement necessary for state '" + measurements_by_configuration['name']
                           + "' with params: " + str(measurements_by_configuration['parameter']))
            else:
                # assume that all measurements of the same param configuration are fundamentally
                # similar -> calculate penalty for first measurement, use it for all
                if opt_pen_override is None:
                    signal = np.array(measurements_by_configuration['offline'][0]['uW'])
                    normed_signal = norm_signal(signal)
                    penalty = calculate_penalty_value(normed_signal, model=opt_model,
                                                      range_min=opt_range_min,
                                                      range_max=opt_range_max,
                                                      num_processes=opt_num_processes,
                                                      jump=opt_jump, S=opt_S,
                                                      pen_modifier=opt_pen_modifier)
                    penalty = penalty[0]
                else:
                    penalty = opt_pen_override
                # build arguments for parallel excecution
                print_info("Starting raw_states calculation.")
                raw_states_calc_args = []
                for num_measurement, measurement in enumerate(measurements_by_configuration['offline']):
                    raw_states_calc_args.append((num_measurement, measurement, penalty,
                                                 opt_model, opt_jump))

                raw_states_list = [None] * len(measurements_by_configuration['offline'])
                raw_states_res = calc_raw_states(raw_states_calc_args, opt_num_processes)
                # extracting result and putting it in correct order -> index of raw_states_list
                # entry still corresponds with index of measurement in measurements_by_states
                # -> If measurements are discarded the correct ones are easily recognized
                for ret_val in raw_states_res:
                    num_trace = ret_val[0]
                    raw_states = ret_val[1]
                    avg_std = ret_val[2]
                    change_avg_std = ret_val[3]
                    # TODO: Wieso gibt mir meine IDE hier eine Warning aus? Der Index müsste doch
                    #   int sein oder nicht? Es scheint auch vernünftig zu klappen...
                    raw_states_list[num_trace] = raw_states
                    print_info("The average standard deviation for the newly found states in "
                               + "measurement No. " + str(num_trace) + " is " + str(avg_std))
                    print_info("That is a reduction of " + str(change_avg_std))
                print_info("Finished raw_states calculation.")
                num_states_array = [int()] * len(raw_states_list)
                i = 0
                for i, x in enumerate(raw_states_list):
                    num_states_array[i] = len(x)
                avg_num_states = np.mean(num_states_array)
                num_states_dev = np.std(num_states_array)
                print_info("On average " + str(avg_num_states)
                           + " States have been found. The standard deviation"
                           + " is " + str(num_states_dev))
                # TODO: MAGIC NUMBER
                if num_states_dev > 1:
                    print_warning("The number of states varies strongly across measurements."
                                  " Consider choosing a larger value for S or using the "
                                  "pen_modifier option.")
                    time.sleep(5)
                # TODO: Wie bekomme ich da jetzt raus, was die Wahrheit ist?
                # Einfach Durchschnitt nehmen?
                # Preliminary decision: Further on only use the traces, which have the most frequent state count
                counts = np.bincount(num_states_array)
                num_raw_states = np.argmax(counts)
                print_info("Choose " + str(num_raw_states) + " as number of raw_states.")
                i = 0
                cluster_labels_list = []
                num_cluster_list = []
                for num_trace, raw_states in enumerate(raw_states_list):
                    # iterate through raw states from measurements
                    if len(raw_states) == num_raw_states:
                        # build array with power values to cluster these
                        value_to_cluster = np.zeros((num_raw_states, 2))
                        j = 0
                        for s in raw_states:
                            value_to_cluster[j][0] = s[2]
                            value_to_cluster[j][1] = 0
                            j = j + 1
                        # linked = linkage(value_to_cluster, 'single')
                        #
                        # labelList = range(1, 11)
                        #
                        # plt.figure(figsize=(10, 7))
                        # dendrogram(linked,
                        #            orientation='top',
                        #            distance_sort='descending',
                        #            show_leaf_counts=True)
                        # plt.show()
                        # TODO: Automatic detection of number of clusters. Aktuell noch MAGIC NUMBER
                        #   im distance_threshold
                        cluster = AgglomerativeClustering(n_clusters=None, compute_full_tree=True,
                                                          affinity='euclidean',
                                                          linkage='ward',
                                                          distance_threshold=opt_refinement_thresh * 100)
                        # cluster = AgglomerativeClustering(n_clusters=5, affinity='euclidean',
                        #                                   linkage='ward')
                        cluster.fit_predict(value_to_cluster)
                        # print_info("Cluster labels:\n" + str(cluster.labels_))
                        # plt.scatter(value_to_cluster[:, 0], value_to_cluster[:, 1], c=cluster.labels_, cmap='rainbow')
                        # plt.show()
                        # TODO: Problem: Der Algorithmus nummeriert die Zustände nicht immer gleich... also bspw.:
                        # mal ist das tatsächliche Transmit mit 1 belabelt und mal mit 3
                        cluster_labels_list.append((num_trace, cluster.labels_))
                        num_cluster_list.append((num_trace, cluster.n_clusters_))
                        i = i + 1
                    else:
                        print_info("Discarding measurement No. " + str(num_trace) + " because it "
                                   + "did not recognize the number of raw_states correctly.")
                num_used_measurements = len(raw_states_list)
                if i != len(raw_states_list):
                    if i / len(raw_states_list) <= 0.5:
                        print_warning("Only used " + str(i) + "/" + str(len(raw_states_list))
                                      + " Measurements for refinement. "
                                        "Others did not recognize number of states correctly."
                                        "\nYou should verify the integrity of the measurements.")
                    else:
                        print_info("Used " + str(i) + "/" + str(len(raw_states_list))
                                   + " Measurements for refinement. "
                                     "Others did not recognize number of states correctly.")
                    num_used_measurements = i
                    # TODO: DEBUG Kram
                    sys.exit(0)
                else:
                    print_info("Used all available measurements.")

                num_states = np.argmax(np.bincount([elem[1] for elem in num_cluster_list]))
                avg_per_state_list = [None] * len(cluster_labels_list)
                used_clusters = 0
                for number, (num_trace, labels) in enumerate(cluster_labels_list):
                    if num_cluster_list[number][1] == num_states:
                        avg_per_state = [0] * num_states
                        count_per_state = [0] * num_states
                        raw_states = raw_states_list[num_trace]
                        for num_label, label in enumerate(labels):
                            count_per_state[label] = count_per_state[label] + 1
                            avg_per_state[label] = avg_per_state[label] + raw_states[num_label][2]
                        for i, _ in enumerate(avg_per_state):
                            avg_per_state[i] = avg_per_state[i] / count_per_state[i]
                        avg_per_state_list[number] = avg_per_state
                        used_clusters = used_clusters + 1
                    else:
                        # hopefully this does not happen regularly
                        print_info("Discarding measurement " + str(number)
                                   + " because the clustering yielded not matching results.")
                        num_used_measurements = num_used_measurements - 1
                if num_used_measurements == 0:
                    print_error("Something went terribly wrong. Discarded all measurements.")
                    # continue
                    sys.exit(-1)
                # flattend version for clustering:
                values_to_cluster = np.zeros((num_states * used_clusters, 2))
                index = 0
                for avg_per_state in avg_per_state_list:
                    if avg_per_state is not None:
                        for avg in avg_per_state:
                            values_to_cluster[index][0] = avg
                            values_to_cluster[index][1] = 0
                            index = index + 1
                # plt.scatter(values_to_cluster[:, 0], values_to_cluster[:, 1])
                # plt.show()
                cluster = AgglomerativeClustering(n_clusters=num_states)
                cluster.fit_predict(values_to_cluster)
                # Aktuell hast du hier ein plattes Array mit labels. Jetzt also das wieder auf die
                # ursprünglichen Labels abbilden, die dann verändern mit den hier gefundenen Labels.
                # Alle identischen Zustände haben identische Labels. Dann vllt bei resulting
                # sequence ausgeben, wie groß die übereinstimmung bei der Stateabfolge ist.
                new_labels_list = []
                new_labels = []
                i = 0
                for label in cluster.labels_:
                    new_labels.append(label)
                    i = i + 1
                    if i == num_states:
                        new_labels_list.append(new_labels)
                        new_labels = []
                        i = 0
                # only the selected measurements are present in new_labels.
                # new_labels_index should not be incremented, if not selected_measurement is skipped
                new_labels_index = 0
                # cluster_labels_list contains all measurements -> if measurement is skipped
                # still increment the index
                index = 0
                for elem in avg_per_state_list:
                    if elem is not None:
                        for number, label in enumerate(cluster_labels_list[index][1]):
                            cluster_labels_list[index][1][number] = \
                                new_labels_list[new_labels_index][label]
                        new_labels_index = new_labels_index + 1
                    else:
                        # override not selected measurement labels to avoid choosing the wrong ones.
                        for number, label in enumerate(cluster_labels_list[index][1]):
                            cluster_labels_list[index][1][number] = -1
                    index = index + 1
                resulting_sequence = [None] * num_raw_states
                i = 0
                confidence = 0
                for x in resulting_sequence:
                    j = 0
                    test_list = []
                    for arr in [elem[1] for elem in cluster_labels_list]:
                        if num_cluster_list[j][1] != num_states:
                            j = j + 1
                        else:
                            if -1 in arr:
                                print_error("Bei Janis beschweren! Fehler beim Umbenennen der"
                                            " Zustände wahrscheinlich.")
                                sys.exit(-1)
                            test_list.append(arr[i])
                            j = j + 1
                    bincount = np.bincount(test_list)
                    resulting_sequence[i] = np.argmax(bincount)
                    confidence = confidence + bincount[resulting_sequence[i]] / np.sum(bincount)
                    i = i + 1
                confidence = confidence / len(resulting_sequence)
                print_info("Confidence of resulting sequence is " + str(confidence)
                           + " while using " + str(num_used_measurements) + "/"
                           + str(len(raw_states_list)) + " measurements.")
                print(resulting_sequence)
                resulting_sequence_list.append((num_config, resulting_sequence))
        # TODO: Was jetzt? Hier habe ich jetzt pro Konfiguration eine Zustandsfolge. Daraus Automat
        #   erzeugen. Aber wie? Oder erst parametrisieren? Eigentlich brauche ich vorher die
        #   Loops. Wie erkenne ich die? Es können beliebig viele Loops an beliebigen Stellen
        #   auftreten.
        # TODO: Die Zustandsfolgen werden sich nicht einfach in isomorphe(-einzelne wegfallende bzw.
        #   hinzukommende Zustände) Automaten übersetzten lassen. Basiert alles auf dem Problem:
        #   wie erkenne ich, dass zwei Zustände die selben sind und nicht nur einfach eine ähnliche
        #   Leistungsaufnahme haben?! Vllt Zustände 2D clustern? 1Dim = Leistungsaufnahme,
        #   2Dim=Dauer? Zumindest innerhalb einer Paramkonfiguration sollte sich die Dauer eines
        #   Zustands ja nicht mehr ändern.

    elif ".tar" in opt_filename:
        # open with dfatool
        raw_data_args = list()
        raw_data_args.append(opt_filename)
        raw_data = RawData(
            raw_data_args, with_traces=True
        )
        print_info("Preprocessing file. Depending on its size, this could take a while.")
        preprocessed_data = raw_data.get_preprocessed_data()
        print_info("File fully preprocessed")
        # TODO: Mal schauen, wie ich das mache. Erstmal nur mit json
        print_error("Not implemented yet. Please generate .json files first with dfatool and use"
                    " those.")
    else:
        print_error("Unknown dataformat")
        sys.exit(-1)

    # print(tx_data[1]['parameter'])
    # # parse json to array for PELT
    # signal = np.array(tx_data[1]['offline'][0]['uW'])
    #
    # for i in range(0, len(signal)):
    #     signal[i] = signal[i]/1000
    # bkps = calc_pelt(signal, model=opt_model, range_max=opt_range_max, num_processes=opt_num_processes, jump=opt_jump, S=opt_S)
    # fig, ax = rpt.display(signal, bkps)
    # plt.xlabel('Time [us]')
    # plt.ylabel('Power [mW]')
    # plt.show()