1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
|
#!/usr/bin/env python3
import getopt
import plotter
import re
import sys
from dfatool import EnergyModel, RawData
from dfatool import soft_cast_int, is_numeric, gplearn_to_function
opts = {}
def print_model_quality(results):
for state_or_tran in results.keys():
print()
for key, result in results[state_or_tran].items():
if 'smape' in result:
print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
state_or_tran, key, result['smape'], result['mae']))
else:
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0].keys():
for key in result_lists[0][state_or_tran].keys():
buf = '{:20s} {:15s}'.format(state_or_tran, key)
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if 'smape' in result:
buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
buf += '{:6} {:9.0f}'.format('', result['mae'])
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
print('')
print(r'key attribute $1 - \frac{\sigma_X}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.by_name[state_or_tran]['attributes']:
print('{} {} {:.8f}'.format(state_or_tran, attribute, model.generic_param_dependence_ratio(state_or_tran, attribute)))
print('')
print(r'key attribute parameter $1 - \frac{...}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.by_name[state_or_tran]['attributes']:
for param in model.parameters():
print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.param_dependence_ratio(state_or_tran, attribute, param)))
if state_or_tran in model._num_args:
for arg_index in range(model._num_args[state_or_tran]):
print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
if __name__ == '__main__':
ignored_trace_indexes = None
discard_outliers = None
tex_output = False
function_override = {}
try:
optspec = (
'plot-unparam= plot-param= '
'ignored-trace-indexes= discard-outliers= function-override= tex-output'
)
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
for option, parameter in raw_opts:
optname = re.sub(r'^--', '', option)
opts[optname] = parameter
if 'ignored-trace-indexes' in opts:
ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
if 0 in ignored_trace_indexes:
print('[E] arguments to --ignored-trace-indexes start from 1')
if 'discard-outliers' in opts:
discard_outliers = float(opts['discard-outliers'])
if 'function-override' in opts:
for function_desc in opts['function-override'].split(';'):
state_or_tran, attribute, *function_str = function_desc.split(' ')
function_override[(state_or_tran, attribute)] = ' '.join(function_str)
if 'tex-output' in opts:
tex_output = True
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = RawData(args)
preprocessed_data = raw_data.get_preprocessed_data()
model = EnergyModel(preprocessed_data,
ignore_trace_indexes = ignored_trace_indexes,
discard_outliers = discard_outliers,
function_override = function_override)
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute = kv.split(' ')
plotter.plot_y(model.by_name[state_or_trans][attribute])
print('--- simple static model ---')
static_model = model.get_static()
#for state in model.states():
# print('{:10s}: {:.0f} µW ({:.2f})'.format(
# state,
# static_model(state, 'power'),
# model.generic_param_dependence_ratio(state, 'power')))
# for param in model.parameters():
# print('{:10s} dependence on {:15s}: {:.2f}'.format(
# '',
# param,
# model.param_dependence_ratio(state, 'power', param)))
#for trans in model.transitions():
# print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
# trans, static_model(trans, 'energy'),
# static_model(trans, 'rel_energy_prev'),
# static_model(trans, 'rel_energy_next'),
# model.generic_param_dependence_ratio(trans, 'energy'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
# print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
static_quality = model.assess(static_model)
print('--- LUT ---')
lut_model = model.get_param_lut()
lut_quality = model.assess(lut_model)
print('--- param model ---')
param_model, param_info = model.get_fitted()
if not tex_output:
for state in model.states():
for attribute in ['power']:
if param_info(state, attribute):
print('{:10s}: {}'.format(state, param_info(state, attribute)['function']._model_str))
print('{:10s} {}'.format('', param_info(state, attribute)['function']._regression_args))
for trans in model.transitions():
for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
if param_info(trans, attribute):
print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
analytic_quality = model.assess(param_model)
if tex_output:
print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality)
else:
model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
if 'plot-param' in opts:
for kv in opts['plot-param'].split(';'):
state_or_trans, attribute, param_name, *function = kv.split(' ')
if len(function):
function = gplearn_to_function(' '.join(function))
else:
function = None
plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
sys.exit(0)
|