summaryrefslogtreecommitdiff
path: root/bin/analyze-archive.py
blob: a9ef3bc7baf7b46bfbef3b743dff42aec707a2f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
#!/usr/bin/env python3

import getopt
import plotter
import re
import sys
from dfatool import EnergyModel, RawData, soft_cast_int

opts = {}

def print_model_quality(results):
    for state_or_tran in results.keys():
        print()
        for key, result in results[state_or_tran].items():
            if 'smape' in result:
                print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
                    state_or_tran, key, result['smape'], result['mae']))
            else:
                print('{:20s} {:15s} {:.0f}'.format(
                    state_or_tran, key, result['mae']))


def model_quality_table(result_lists, info_list):
    for state_or_tran in result_lists[0].keys():
        for key in result_lists[0][state_or_tran].keys():
            buf = '{:20s} {:15s}'.format(state_or_tran, key)
            for i, results in enumerate(result_lists):
                info = info_list[i]
                buf += '  |||  '
                if info == None or info(state_or_tran, key):
                    result = results[state_or_tran][key]
                    if 'smape' in result:
                        buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
                    else:
                        buf += '{:6}    {:9.0f}'.format('', result['mae'])
                else:
                    buf += '{:6}----{:9}'.format('', '')
            print(buf)

if __name__ == '__main__':

    ignored_trace_indexes = None
    discard_outliers = None

    try:
        raw_opts, args = getopt.getopt(sys.argv[1:], "",
            'plot ignored-trace-indexes= discard-outliers='.split(' '))

        for option, parameter in raw_opts:
            optname = re.sub(r'^--', '', option)
            opts[optname] = parameter

            if 'ignored-trace-indexes' in opts:
                ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
                if 0 in ignored_trace_indexes:
                    print('[E] arguments to --ignored-trace-indexes start from 1')

            if 'discard-outliers' in opts:
                discard_outliers = float(opts['discard-outliers'])

    except getopt.GetoptError as err:
        print(err)
        sys.exit(2)

    raw_data = RawData(args)

    preprocessed_data = raw_data.get_preprocessed_data()
    model = EnergyModel(preprocessed_data,
        ignore_trace_indexes = ignored_trace_indexes,
        discard_outliers = discard_outliers)

    print('--- simple static model ---')
    static_model = model.get_static()
    #for state in model.states():
    #    print('{:10s}: {:.0f} µW  ({:.2f})'.format(
    #        state,
    #        static_model(state, 'power'),
    #        model.generic_param_dependence_ratio(state, 'power')))
    #    for param in model.parameters():
    #        print('{:10s}  dependence on {:15s}: {:.2f}'.format(
    #            '',
    #            param,
    #            model.param_dependence_ratio(state, 'power', param)))
    #for trans in model.transitions():
    #    print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ  ({:.2f} / {:.2f} / {:.2f})'.format(
    #        trans, static_model(trans, 'energy'),
    #        static_model(trans, 'rel_energy_prev'),
    #        static_model(trans, 'rel_energy_next'),
    #        model.generic_param_dependence_ratio(trans, 'energy'),
    #        model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
    #        model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
    #    print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
    static_quality = model.assess(static_model)

    print('--- LUT ---')
    lut_model = model.get_param_lut()
    lut_quality = model.assess(lut_model)

    print('--- param model ---')
    param_model, param_info = model.get_fitted()
    for state in model.states():
        for attribute in ['power']:
            if param_info(state, attribute):
                print('{:10s}: {}'.format(state, param_info(state, attribute)['function']._model_str))
                print('{:10s}  {}'.format('', param_info(state, attribute)['function']._regression_args))
    for trans in model.transitions():
        for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
            if param_info(trans, attribute):
                print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
                print('{:10s}  {:10s}  {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
    analytic_quality = model.assess(param_model)
    model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])

    sys.exit(0)