1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
#!/usr/bin/env python3
"""
analyze-timing -- generate analytic energy model from annotated OnboardTimerHarness traces.
Usage:
PYTHONPATH=lib bin/analyze-timing.py [options] <tracefiles ...>
analyze-timing generates an analytic energy model (``AnalyticModel``)from one or more annotated
traces generated by generate-dfa-benchmark using OnboardTimerHarness. By default, it does nothing else --
use one of the --plot-* or --show-* options to examine the generated model.
Options:
--plot-unparam=<name>:<attribute>:<Y axis label>[;<name>:<attribute>:<label>;...]
Plot all mesurements for <name> <attribute> without regard for parameter values.
X axis is measurement number/id.
--plot-param=<name> <attribute> <parameter> [gplearn function][;<name> <attribute> <parameter> [function];...]
Plot measurements for <name> <attribute> by <parameter>.
X axis is parameter value.
Plots the model function as one solid line for each combination of non-<parameter>
parameters. Also plots the corresponding measurements.
If gplearn function is set, it is plotted using dashed lines.
--param-info
Show parameter names and values
--show-models=<static|paramdetection|param|all|tex>
static: show static model values as well as parameter detection heuristic
paramdetection: show stddev of static/lut/fitted model
param: show parameterized model functions and regression variable values
all: all of the above
tex: print tex/pgfplots-compatible model data on stdout
--show-quality=<table|summary|all|tex>
table: show static/fitted/lut SMAPE and MAE for each name and attribute
summary: show static/fitted/lut SMAPE and MAE for each attribute, averaged over all states/transitions
all: all of the above
tex: print tex/pgfplots-compatible model quality data on stdout
--ignored-trace-indexes=<i1,i2,...>
Specify traces which should be ignored due to bogus data. 1 is the first
trace, 2 the second, and so on.
--cross-validate=<method>:<count>
Perform cross validation when computing model quality.
Only works with --show-quality=table at the moment.
If <method> is "montecarlo": Randomly divide data into 2/3 training and 1/3
validation, <count> times. Reported model quality is the average of all
validation runs. Data is partitioned without regard for parameter values,
so a specific parameter combination may be present in both training and
validation sets or just one of them.
--function-override=<name attribute function>[;<name> <attribute> <function>;...]
Manually specify the function to fit for <name> <attribute>. A function
specified this way bypasses parameter detection: It is always assigned,
even if the model seems to be independent of the parameters it references.
--with-safe-functions
If set, include "safe" functions (safe_log, safe_inv, safe_sqrt) which are
also defined for cases such as safe_inv(0) or safe_sqrt(-1). This allows
a greater range of functions to be tried during fitting.
--hwmodel=<hwmodel.json>
Load DFA hardware model from JSON
--export-energymodel=<model.json>
Export energy model. Requires --hwmodel.
--filter-param=<parameter name>=<parameter value>[,<parameter name>=<parameter value>...]
Only consider measurements where <parameter name> is <parameter value>
All other measurements (including those where it is None, that is, has
not been set yet) are discarded. Note that this may remove entire
function calls from the model.
"""
import getopt
import json
import plotter
import re
import sys
from dfatool import AnalyticModel, TimingData, pta_trace_to_aggregate
from dfatool import gplearn_to_function
from dfatool import CrossValidator
from utils import filter_aggregate_by_param
from parameters import prune_dependent_parameters
opts = {}
def print_model_quality(results):
for state_or_tran in results.keys():
print()
for key, result in results[state_or_tran].items():
if 'smape' in result:
print('{:20s} {:15s} {:.2f}% / {:.0f}'.format(
state_or_tran, key, result['smape'], result['mae']))
else:
print('{:20s} {:15s} {:.0f}'.format(
state_or_tran, key, result['mae']))
def format_quality_measures(result):
if 'smape' in result:
return '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
return '{:6} {:9.0f}'.format('', result['mae'])
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]['by_name'].keys():
for key in result_lists[0]['by_name'][state_or_tran].keys():
buf = '{:20s} {:15s}'.format(state_or_tran, key)
for i, results in enumerate(result_lists):
info = info_list[i]
buf += ' ||| '
if info is None or info(state_or_tran, key):
result = results['by_name'][state_or_tran][key]
buf += format_quality_measures(result)
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
def print_text_model_data(model, pm, pq, lm, lq, am, ai, aq):
print('')
print(r'key attribute $1 - \frac{\sigma_X}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
print('{} {} {:.8f}'.format(state_or_tran, attribute, model.stats.generic_param_dependence_ratio(state_or_tran, attribute)))
print('')
print(r'key attribute parameter $1 - \frac{...}{...}$')
for state_or_tran in model.by_name.keys():
for attribute in model.attributes(state_or_tran):
for param in model.parameters():
print('{} {} {} {:.8f}'.format(state_or_tran, attribute, param, model.stats.param_dependence_ratio(state_or_tran, attribute, param)))
if state_or_tran in model._num_args:
for arg_index in range(model._num_args[state_or_tran]):
print('{} {} {:d} {:.8f}'.format(state_or_tran, attribute, arg_index, model.stats.arg_dependence_ratio(state_or_tran, attribute, arg_index)))
if __name__ == '__main__':
ignored_trace_indexes = []
discard_outliers = None
safe_functions_enabled = False
function_override = {}
show_models = []
show_quality = []
hwmodel = None
energymodel_export_file = None
xv_method = None
xv_count = 10
try:
optspec = (
'plot-unparam= plot-param= show-models= show-quality= '
'ignored-trace-indexes= discard-outliers= function-override= '
'filter-param= '
'cross-validate= '
'corrcoef param-info '
'with-safe-functions hwmodel= export-energymodel='
)
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
for option, parameter in raw_opts:
optname = re.sub(r'^--', '', option)
opts[optname] = parameter
if 'ignored-trace-indexes' in opts:
ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
if 0 in ignored_trace_indexes:
print('[E] arguments to --ignored-trace-indexes start from 1')
if 'discard-outliers' in opts:
discard_outliers = float(opts['discard-outliers'])
if 'function-override' in opts:
for function_desc in opts['function-override'].split(';'):
state_or_tran, attribute, *function_str = function_desc.split(' ')
function_override[(state_or_tran, attribute)] = ' '.join(function_str)
if 'show-models' in opts:
show_models = opts['show-models'].split(',')
if 'show-quality' in opts:
show_quality = opts['show-quality'].split(',')
if 'cross-validate' in opts:
xv_method, xv_count = opts['cross-validate'].split(':')
xv_count = int(xv_count)
if 'with-safe-functions' in opts:
safe_functions_enabled = True
if 'hwmodel' in opts:
with open(opts['hwmodel'], 'r') as f:
hwmodel = json.load(f)
if 'corrcoef' not in opts:
opts['corrcoef'] = False
if 'filter-param' in opts:
opts['filter-param'] = list(map(lambda x: x.split('='), opts['filter-param'].split(',')))
else:
opts['filter-param'] = list()
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = TimingData(args)
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
prune_dependent_parameters(by_name, parameters)
filter_aggregate_by_param(by_name, parameters, opts['filter-param'])
model = AnalyticModel(by_name, parameters, arg_count, use_corrcoef=opts['corrcoef'], function_override=function_override)
if xv_method:
xv = CrossValidator(AnalyticModel, by_name, parameters, arg_count)
if 'param-info' in opts:
for state in model.names:
print('{}:'.format(state))
for param in model.parameters:
print(' {} = {}'.format(param, model.stats.distinct_values[state][param]))
if 'plot-unparam' in opts:
for kv in opts['plot-unparam'].split(';'):
state_or_trans, attribute, ylabel = kv.split(':')
fname = 'param_y_{}_{}.pdf'.format(state_or_trans, attribute)
plotter.plot_y(model.by_name[state_or_trans][attribute], xlabel='measurement #', ylabel=ylabel)
if len(show_models):
print('--- simple static model ---')
static_model = model.get_static()
if 'static' in show_models or 'all' in show_models:
for trans in model.names:
print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
for param in model.parameters:
print('{:10s} dependence on {:15s}: {:.2f}'.format(
'',
param,
model.stats.param_dependence_ratio(trans, 'duration', param)))
if model.stats.has_codependent_parameters(trans, 'duration', param):
print('{:24s} co-dependencies: {:s}'.format('', ', '.join(model.stats.codependent_parameters(trans, 'duration', param))))
for param_dict in model.stats.codependent_parameter_value_dicts(trans, 'duration', param):
print('{:24s} parameter-aware for {}'.format('', param_dict))
# import numpy as np
# safe_div = np.vectorize(lambda x,y: 0. if x == 0 else 1 - x/y)
# ratio_by_value = safe_div(model.stats.stats['write']['duration']['lut_by_param_values']['max_retry_count'], model.stats.stats['write']['duration']['std_by_param_values']['max_retry_count'])
# err_mode = np.seterr('warn')
# dep_by_value = ratio_by_value > 0.5
# np.seterr(**err_mode)
# Eigentlich sollte hier ein paar mal True stehen, ist aber nicht so...
# und warum ist da eine non-power-of-two Zahl von True-Einträgen in der Matrix? 3 stück ist komisch...
# print(dep_by_value)
if xv_method == 'montecarlo':
static_quality = xv.montecarlo(lambda m: m.get_static(), xv_count)
else:
static_quality = model.assess(static_model)
if len(show_models):
print('--- LUT ---')
lut_model = model.get_param_lut()
if xv_method == 'montecarlo':
lut_quality = xv.montecarlo(lambda m: m.get_param_lut(fallback=True), xv_count)
else:
lut_quality = model.assess(lut_model)
if len(show_models):
print('--- param model ---')
param_model, param_info = model.get_fitted(safe_functions_enabled=safe_functions_enabled)
if 'paramdetection' in show_models or 'all' in show_models:
for transition in model.names:
for attribute in ['duration']:
info = param_info(transition, attribute)
print('{:10s} {:10s} non-param stddev {:f}'.format(
transition, attribute, model.stats.stats[transition][attribute]['std_static']
))
print('{:10s} {:10s} param-lut stddev {:f}'.format(
transition, attribute, model.stats.stats[transition][attribute]['std_param_lut']
))
for param in sorted(model.stats.stats[transition][attribute]['std_by_param'].keys()):
print('{:10s} {:10s} {:10s} stddev {:f}'.format(
transition, attribute, param, model.stats.stats[transition][attribute]['std_by_param'][param]
))
print('{:10s} {:10s} dependence on {:15s}: {:.2f}'.format(
transition, attribute, param, model.stats.param_dependence_ratio(transition, attribute, param)))
for i, arg_stddev in enumerate(model.stats.stats[transition][attribute]['std_by_arg']):
print('{:10s} {:10s} arg{:d} stddev {:f}'.format(
transition, attribute, i, arg_stddev
))
print('{:10s} {:10s} dependence on arg{:d}: {:.2f}'.format(
transition, attribute, i, model.stats.arg_dependence_ratio(transition, attribute, i)))
if info is not None:
for param_name in sorted(info['fit_result'].keys(), key=str):
param_fit = info['fit_result'][param_name]['results']
for function_type in sorted(param_fit.keys()):
function_rmsd = param_fit[function_type]['rmsd']
print('{:10s} {:10s} {:10s} mean {:10s} RMSD {:.0f}'.format(
transition, attribute, str(param_name), function_type, function_rmsd
))
if 'param' in show_models or 'all' in show_models:
for trans in model.names:
for attribute in ['duration']:
if param_info(trans, attribute):
print('{:10s}: {:10s}: {}'.format(trans, attribute, param_info(trans, attribute)['function']._model_str))
print('{:10s} {:10s} {}'.format('', '', param_info(trans, attribute)['function']._regression_args))
if xv_method == 'montecarlo':
analytic_quality = xv.montecarlo(lambda m: m.get_fitted()[0], xv_count)
else:
analytic_quality = model.assess(param_model)
if 'tex' in show_models or 'tex' in show_quality:
print_text_model_data(model, static_model, static_quality, lut_model, lut_quality, param_model, param_info, analytic_quality)
if 'table' in show_quality or 'all' in show_quality:
model_quality_table([static_quality, analytic_quality, lut_quality], [None, param_info, None])
if 'plot-param' in opts:
for kv in opts['plot-param'].split(';'):
state_or_trans, attribute, param_name, *function = kv.split(' ')
if len(function):
function = gplearn_to_function(' '.join(function))
else:
function = None
plotter.plot_param(model, state_or_trans, attribute, model.param_index(param_name), extra_function=function)
sys.exit(0)
|