1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
#!/usr/bin/env python3
"""eval-kconfig - tbd
"""
import argparse
import json
import kconfiglib
import logging
import os
import sys
import numpy as np
from dfatool import kconfig, validation
from dfatool.loader import KConfigAttributes
from dfatool.model import KConfigModel
from versuchung.experiment import Experiment
from versuchung.types import String, Bool, Integer
from versuchung.files import File, Directory
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.RawDescriptionHelpFormatter, description=__doc__
)
parser.add_argument(
"--log-level",
default=logging.INFO,
type=lambda level: getattr(logging, level.upper()),
help="Set log level",
)
parser.add_argument(
"--attribute", choices=["rom", "ram"], default="rom", help="Model attribute"
)
parser.add_argument(
"--with-choice-node", action="store_true", help="Use non-binary Choice Nodes"
)
parser.add_argument("kconfig_path", type=str, help="Path to Kconfig file")
parser.add_argument(
"experiment_root", type=str, help="Experiment results directory"
)
parser.add_argument("model", type=str, help="JSON model", nargs="?")
args = parser.parse_args()
if isinstance(args.log_level, int):
logging.basicConfig(level=args.log_level)
else:
print(f"Invalid log level. Setting log level to INFO.", file=sys.stderr)
data = KConfigAttributes(args.kconfig_path, args.experiment_root)
k = 10
partition_pairs = validation._xv_partitions_kfold(len(data.data), k)
measures = list()
for training_set, validation_set in partition_pairs:
model = KConfigModel.from_benchmark(data, args.attribute, indices=training_set)
model.with_choice_node = args.with_choice_node
model.build_tree()
measures.append(model.assess_benchmark(data, indices=validation_set))
aggregate = dict()
for measure in measures[0].keys():
aggregate[measure] = np.mean(list(map(lambda m: m[measure], measures)))
aggregate["unpredictable_count"] = np.sum(
list(map(lambda m: m["unpredictable_count"], measures))
)
print("10-fold Cross Validation:")
print(f"MAE: {aggregate['mae']:.0f} B")
print(f"SMAPE: {aggregate['smape']:.0f} %")
print(f"Unpredictable Configurations: {aggregate['unpredictable_count']}")
print(aggregate)
"""
if args.model:
with open(args.model, "r") as f:
model = KConfigModel.from_json(json.load(f))
else:
model = KConfigModel.from_benchmark(data, args.attribute)
model.build_tree()
"""
if __name__ == "__main__":
main()
|