1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
|
#!/usr/bin/env python3
import getopt
import plotter
import re
import sys
from dfatool import PTAModel, RawData, soft_cast_int, pta_trace_to_aggregate
opts = {}
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]['by_name'].keys():
for key in result_lists[0]['by_name'][state_or_tran].keys():
buf = '{:20s} {:15s}'.format(state_or_tran, key)
for i, results in enumerate(result_lists):
results = results['by_name']
info = info_list[i]
buf += ' ||| '
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if 'smape' in result:
buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
buf += '{:6} {:9.0f}'.format('', result['mae'])
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
def combo_model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0][0]['by_name'].keys():
for key in result_lists[0][0]['by_name'][state_or_tran].keys():
for sub_result_lists in result_lists:
buf = '{:20s} {:15s}'.format(state_or_tran, key)
for i, results in enumerate(sub_result_lists):
results = results['by_name']
info = info_list[i]
buf += ' ||| '
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if 'smape' in result:
buf += '{:6.2f}% / {:9.0f}'.format(result['smape'], result['mae'])
else:
buf += '{:6} {:9.0f}'.format('', result['mae'])
else:
buf += '{:6}----{:9}'.format('', '')
print(buf)
if __name__ == '__main__':
ignored_trace_indexes = []
discard_outliers = None
try:
raw_opts, args = getopt.getopt(sys.argv[1:], "",
'plot ignored-trace-indexes= discard-outliers='.split(' '))
for option, parameter in raw_opts:
optname = re.sub(r'^--', '', option)
opts[optname] = parameter
if 'ignored-trace-indexes' in opts:
ignored_trace_indexes = list(map(int, opts['ignored-trace-indexes'].split(',')))
if 0 in ignored_trace_indexes:
print('[E] arguments to --ignored-trace-indexes start from 1')
if 'discard-outliers' in opts:
discard_outliers = float(opts['discard-outliers'])
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = RawData(args)
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(preprocessed_data, ignored_trace_indexes)
m1 = PTAModel(by_name, parameters, arg_count,
traces = preprocessed_data,
ignore_trace_indexes = ignored_trace_indexes)
m2 = PTAModel(by_name, parameters, arg_count,
traces = preprocessed_data,
ignore_trace_indexes = ignored_trace_indexes,
discard_outliers = discard_outliers)
print('--- simple static model ---')
static_m1 = m1.get_static()
static_m2 = m2.get_static()
#for state in model.states():
# print('{:10s}: {:.0f} µW ({:.2f})'.format(
# state,
# static_model(state, 'power'),
# model.generic_param_dependence_ratio(state, 'power')))
# for param in model.parameters():
# print('{:10s} dependence on {:15s}: {:.2f}'.format(
# '',
# param,
# model.param_dependence_ratio(state, 'power', param)))
#for trans in model.transitions():
# print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
# trans, static_model(trans, 'energy'),
# static_model(trans, 'rel_energy_prev'),
# static_model(trans, 'rel_energy_next'),
# model.generic_param_dependence_ratio(trans, 'energy'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
# print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
static_q1 = m1.assess(static_m1)
static_q2 = m2.assess(static_m2)
static_q12 = m1.assess(static_m2)
print('--- LUT ---')
lut_m1 = m1.get_param_lut()
lut_m2 = m2.get_param_lut()
lut_q1 = m1.assess(lut_m1)
lut_q2 = m2.assess(lut_m2)
lut_q12 = m1.assess(lut_m2)
print('--- param model ---')
param_m1, param_i1 = m1.get_fitted()
for state in m1.states():
for attribute in ['power']:
if param_i1(state, attribute):
print('{:10s}: {}'.format(state, param_i1(state, attribute)['function']._model_str))
print('{:10s} {}'.format('', param_i1(state, attribute)['function']._regression_args))
for trans in m1.transitions():
for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
if param_i1(trans, attribute):
print('{:10s}: {:10s}: {}'.format(trans, attribute, param_i1(trans, attribute)['function']._model_str))
print('{:10s} {:10s} {}'.format('', '', param_i1(trans, attribute)['function']._regression_args))
param_m2, param_i2 = m2.get_fitted()
for state in m2.states():
for attribute in ['power']:
if param_i2(state, attribute):
print('{:10s}: {}'.format(state, param_i2(state, attribute)['function']._model_str))
print('{:10s} {}'.format('', param_i2(state, attribute)['function']._regression_args))
for trans in m2.transitions():
for attribute in ['energy', 'rel_energy_prev', 'rel_energy_next', 'duration', 'timeout']:
if param_i2(trans, attribute):
print('{:10s}: {:10s}: {}'.format(trans, attribute, param_i2(trans, attribute)['function']._model_str))
print('{:10s} {:10s} {}'.format('', '', param_i2(trans, attribute)['function']._regression_args))
analytic_q1 = m1.assess(param_m1)
analytic_q2 = m2.assess(param_m2)
analytic_q12 = m1.assess(param_m2)
model_quality_table([static_q1, analytic_q1, lut_q1], [None, param_i1, None])
model_quality_table([static_q2, analytic_q2, lut_q2], [None, param_i2, None])
model_quality_table([static_q12, analytic_q12, lut_q12], [None, param_i2, None])
combo_model_quality_table([
[static_q1, analytic_q1, lut_q1],
[static_q2, analytic_q2, lut_q2],
[static_q12, analytic_q12, lut_q12]],
[None, param_i1, None])
sys.exit(0)
|