1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
#!/usr/bin/env python3
import getopt
import re
import sys
from dfatool.dfatool import PTAModel, RawData, pta_trace_to_aggregate
opt = dict()
def model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0]["by_name"].keys():
for key in result_lists[0]["by_name"][state_or_tran].keys():
buf = "{:20s} {:15s}".format(state_or_tran, key)
for i, results in enumerate(result_lists):
results = results["by_name"]
info = info_list[i]
buf += " ||| "
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if "smape" in result:
buf += "{:6.2f}% / {:9.0f}".format(
result["smape"], result["mae"]
)
else:
buf += "{:6} {:9.0f}".format("", result["mae"])
else:
buf += "{:6}----{:9}".format("", "")
print(buf)
def combo_model_quality_table(result_lists, info_list):
for state_or_tran in result_lists[0][0]["by_name"].keys():
for key in result_lists[0][0]["by_name"][state_or_tran].keys():
for sub_result_lists in result_lists:
buf = "{:20s} {:15s}".format(state_or_tran, key)
for i, results in enumerate(sub_result_lists):
results = results["by_name"]
info = info_list[i]
buf += " ||| "
if info == None or info(state_or_tran, key):
result = results[state_or_tran][key]
if "smape" in result:
buf += "{:6.2f}% / {:9.0f}".format(
result["smape"], result["mae"]
)
else:
buf += "{:6} {:9.0f}".format("", result["mae"])
else:
buf += "{:6}----{:9}".format("", "")
print(buf)
if __name__ == "__main__":
ignored_trace_indexes = []
discard_outliers = None
try:
raw_opts, args = getopt.getopt(
sys.argv[1:], "", "plot ignored-trace-indexes= discard-outliers=".split(" ")
)
for option, parameter in raw_opts:
optname = re.sub(r"^--", "", option)
opt[optname] = parameter
if "ignored-trace-indexes" in opt:
ignored_trace_indexes = list(
map(int, opt["ignored-trace-indexes"].split(","))
)
if 0 in ignored_trace_indexes:
print("[E] arguments to --ignored-trace-indexes start from 1")
if "discard-outliers" in opt:
discard_outliers = float(opt["discard-outliers"])
except getopt.GetoptError as err:
print(err)
sys.exit(2)
raw_data = RawData(args)
preprocessed_data = raw_data.get_preprocessed_data()
by_name, parameters, arg_count = pta_trace_to_aggregate(
preprocessed_data, ignored_trace_indexes
)
m1 = PTAModel(
by_name,
parameters,
arg_count,
traces=preprocessed_data,
ignore_trace_indexes=ignored_trace_indexes,
)
m2 = PTAModel(
by_name,
parameters,
arg_count,
traces=preprocessed_data,
ignore_trace_indexes=ignored_trace_indexes,
discard_outliers=discard_outliers,
)
print("--- simple static model ---")
static_m1 = m1.get_static()
static_m2 = m2.get_static()
# for state in model.states():
# print('{:10s}: {:.0f} µW ({:.2f})'.format(
# state,
# static_model(state, 'power'),
# model.generic_param_dependence_ratio(state, 'power')))
# for param in model.parameters():
# print('{:10s} dependence on {:15s}: {:.2f}'.format(
# '',
# param,
# model.param_dependence_ratio(state, 'power', param)))
# for trans in model.transitions():
# print('{:10s}: {:.0f} / {:.0f} / {:.0f} pJ ({:.2f} / {:.2f} / {:.2f})'.format(
# trans, static_model(trans, 'energy'),
# static_model(trans, 'rel_energy_prev'),
# static_model(trans, 'rel_energy_next'),
# model.generic_param_dependence_ratio(trans, 'energy'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_prev'),
# model.generic_param_dependence_ratio(trans, 'rel_energy_next')))
# print('{:10s}: {:.0f} µs'.format(trans, static_model(trans, 'duration')))
static_q1 = m1.assess(static_m1)
static_q2 = m2.assess(static_m2)
static_q12 = m1.assess(static_m2)
print("--- LUT ---")
lut_m1 = m1.get_param_lut()
lut_m2 = m2.get_param_lut()
lut_q1 = m1.assess(lut_m1)
lut_q2 = m2.assess(lut_m2)
lut_q12 = m1.assess(lut_m2)
print("--- param model ---")
param_m1, param_i1 = m1.get_fitted()
for state in m1.states():
for attribute in ["power"]:
if param_i1(state, attribute):
print(
"{:10s}: {}".format(
state, param_i1(state, attribute)["function"]._model_str
)
)
print(
"{:10s} {}".format(
"", param_i1(state, attribute)["function"]._regression_args
)
)
for trans in m1.transitions():
for attribute in [
"energy",
"rel_energy_prev",
"rel_energy_next",
"duration",
"timeout",
]:
if param_i1(trans, attribute):
print(
"{:10s}: {:10s}: {}".format(
trans,
attribute,
param_i1(trans, attribute)["function"]._model_str,
)
)
print(
"{:10s} {:10s} {}".format(
"", "", param_i1(trans, attribute)["function"]._regression_args
)
)
param_m2, param_i2 = m2.get_fitted()
for state in m2.states():
for attribute in ["power"]:
if param_i2(state, attribute):
print(
"{:10s}: {}".format(
state, param_i2(state, attribute)["function"]._model_str
)
)
print(
"{:10s} {}".format(
"", param_i2(state, attribute)["function"]._regression_args
)
)
for trans in m2.transitions():
for attribute in [
"energy",
"rel_energy_prev",
"rel_energy_next",
"duration",
"timeout",
]:
if param_i2(trans, attribute):
print(
"{:10s}: {:10s}: {}".format(
trans,
attribute,
param_i2(trans, attribute)["function"]._model_str,
)
)
print(
"{:10s} {:10s} {}".format(
"", "", param_i2(trans, attribute)["function"]._regression_args
)
)
analytic_q1 = m1.assess(param_m1)
analytic_q2 = m2.assess(param_m2)
analytic_q12 = m1.assess(param_m2)
model_quality_table([static_q1, analytic_q1, lut_q1], [None, param_i1, None])
model_quality_table([static_q2, analytic_q2, lut_q2], [None, param_i2, None])
model_quality_table([static_q12, analytic_q12, lut_q12], [None, param_i2, None])
combo_model_quality_table(
[
[static_q1, analytic_q1, lut_q1],
[static_q2, analytic_q2, lut_q2],
[static_q12, analytic_q12, lut_q12],
],
[None, param_i1, None],
)
sys.exit(0)
|