1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
|
#!/usr/bin/env python3
"""
Generate a driver/library benchmark based on DFA/PTA traces.
Usage:
PYTHONPATH=lib bin/generate-dfa-benchmark.py [options] <pta/dfa definition> [output.cc]
generate-dfa-benchmarks reads in a DFA definition and generates runs
(i.e., all words accepted by the DFA up to a configurable length). Each symbol
corresponds to a function call. If arguments are specified in the DFA
definition, each symbol corresponds to a function call with a specific set of
arguments (so all argument combinations are present in the generated runs).
Options:
--accounting=static_state|static_state_immediate|static_statetransition|static_statetransition_immedate
Select accounting method for dummy driver generation
--dummy=<class name>
Generate and use a dummy driver for online energy model overhead evaluation
--depth=<depth> (default: 3)
Maximum number of function calls per run
--repeat=<count> (default: 0)
Repeat benchmark runs <count> times. When 0, benchmark runs are repeated
indefinitely and must be explicitly terminated with Ctrl+C / SIGINT
--instance=<name>
Override the name of the class instance used for benchmarking
--sleep=<ms> (default: 0)
How long to sleep between function calls.
--trace-filter=<transition,transition,transition,...>[ <transition,transition,transition,...> ...]
Only consider traces whose beginning matches one of the provided transition sequences.
E.g. --trace-filter='init,foo init,bar' will only consider traces with init as first and foo or bar as second transition,
and --trace-filter='init,foo,$ init,bar,$' will only consider the traces init -> foo and init -> bar.
"""
import getopt
import json
import re
import runner
import sys
import time
import io
import yaml
from aspectc import Repo
from automata import PTA
from codegen import *
from harness import OnboardTimerHarness
opt = dict()
def benchmark_from_runs(pta: PTA, runs: list, harness: OnboardTimerHarness, benchmark_id: int = 0, dummy = False) -> io.StringIO:
outbuf = io.StringIO()
outbuf.write('#include "arch.h"\n')
if dummy:
outbuf.write('#include "driver/dummy.h"\n')
elif 'includes' in pta.codegen:
for include in pta.codegen['includes']:
outbuf.write('#include "{}"\n'.format(include))
outbuf.write(harness.global_code())
outbuf.write('int main(void)\n')
outbuf.write('{\n')
for driver in ('arch', 'gpio', 'kout'):
outbuf.write('{}.setup();\n'.format(driver))
if 'setup' in pta.codegen:
for call in pta.codegen['setup']:
outbuf.write(call)
# There is a race condition between flashing the code and starting the UART log.
# When starting the log before flashing, output from a previous benchmark may cause bogus data to be added.
# When flashing first and then starting the log, the first log lines may be lost.
# To work around this, we flash first, then start the log, and use this delay statement to ensure that no output is lost.
# This is also useful to faciliate MIMOSA calibration after flashing.
outbuf.write('arch.delay_ms(10000);\n')
outbuf.write('while (1) {\n')
outbuf.write(harness.start_benchmark())
class_prefix = ''
if 'instance' in opt:
class_prefix = '{}.'.format(opt['instance'])
elif 'instance' in pta.codegen:
class_prefix = '{}.'.format(pta.codegen['instance'])
num_transitions = 0
num_traces = 0
for run in runs:
outbuf.write(harness.start_run())
harness.start_trace()
param = pta.get_initial_param_dict()
for transition, arguments, parameter in run:
num_transitions += 1
harness.append_transition(transition.name, param, arguments)
harness.append_state(transition.destination.name, parameter.copy())
outbuf.write('// {} -> {}\n'.format(transition.origin.name, transition.destination.name))
if transition.is_interrupt:
outbuf.write('// wait for {} interrupt\n'.format(transition.name))
transition_code = '// TODO add startTransition / stopTransition calls to interrupt routine'
else:
transition_code = '{}{}({});'.format(class_prefix, transition.name, ', '.join(map(str, arguments)))
outbuf.write(harness.pass_transition(pta.get_transition_id(transition), transition_code, transition = transition))
param = parameter
outbuf.write('// current parameters: {}\n'.format(', '.join(map(lambda kv: '{}={}'.format(*kv), param.items()))))
if opt['sleep']:
outbuf.write('arch.delay_ms({:d}); // {}\n'.format(opt['sleep'], transition.destination.name))
outbuf.write(harness.stop_run(num_traces))
if dummy:
outbuf.write('kout << "[Energy] " << {}getEnergy() << endl;\n'.format(class_prefix))
outbuf.write('\n')
num_traces += 1
outbuf.write(harness.stop_benchmark())
outbuf.write('}\n')
outbuf.write('return 0;\n')
outbuf.write('}\n')
return outbuf
def run_benchmark(application_file: str, pta: PTA, runs: list, arch: str, app: str, run_args: list, harness: object, sleep: int = 0, repeat: int = 0, run_offset: int = 0, runs_total: int = 0, dummy = False):
outbuf = benchmark_from_runs(pta, runs, harness, dummy = dummy)
with open(application_file, 'w') as f:
f.write(outbuf.getvalue())
print('[MAKE] building benchmark with {:d} runs'.format(len(runs)))
# assume an average of 10ms per transition. Mind the 10s start delay.
run_timeout = 10 + num_transitions * (sleep+10) / 1000
if repeat:
run_timeout *= repeat
needs_split = False
try:
runner.build(arch, app, run_args)
except RuntimeError:
if len(runs) > 50:
# Application is too large -> split up runs
needs_split = True
else:
# Unknown error
raise
# This has been deliberately taken out of the except clause to avoid nested exception handlers
# (they lead to pretty interesting tracebacks which are probably more confusing than helpful)
if needs_split:
print('[MAKE] benchmark code is too large, splitting up')
mid = len(runs) // 2
# Previously prepared trace data is useless
harness.reset()
results = run_benchmark(application_file, pta, runs[:mid], arch, app, run_args, harness.copy(), sleep, repeat, run_offset = run_offset, runs_total = runs_total, dummy = dummy)
results.extend(run_benchmark(application_file, pta, runs[mid:], arch, app, run_args, harness.copy(), sleep, repeat, run_offset = run_offset + mid, runs_total = runs_total, dummy = dummy))
return results
runner.flash(arch, app, run_args)
monitor = runner.get_monitor(arch, callback = harness.parser_cb)
if arch == 'posix':
print('[RUN] Will run benchmark for {:.0f} seconds'.format(run_timeout))
lines = monitor.run(int(run_timeout))
return [(runs, harness, lines)]
try:
slept = 0
while repeat == 0 or slept / run_timeout < 1:
time.sleep(5)
slept += 5
print('[RUN] {:d}/{:d} ({:.0f}%), current benchmark at {:.0f}%'.format(run_offset, runs_total, run_offset * 100 / runs_total, slept * 100 / run_timeout))
except KeyboardInterrupt:
pass
lines = monitor.get_lines()
monitor.close()
return [(runs, harness, lines)]
if __name__ == '__main__':
try:
optspec = (
'accounting= '
'arch= '
'app= '
'depth= '
'dummy= '
'instance= '
'repeat= '
'run= '
'sleep= '
'timer-pin= '
'trace-filter= '
)
raw_opts, args = getopt.getopt(sys.argv[1:], "", optspec.split(' '))
for option, parameter in raw_opts:
optname = re.sub(r'^--', '', option)
opt[optname] = parameter
if 'depth' in opt:
opt['depth'] = int(opt['depth'])
else:
opt['depth'] = 3
if 'repeat' in opt:
opt['repeat'] = int(opt['repeat'])
else:
opt['repeat'] = 0
if 'sleep' in opt:
opt['sleep'] = int(opt['sleep'])
else:
opt['sleep'] = 0
if 'trace-filter' in opt:
trace_filter = []
for trace in opt['trace-filter'].split():
trace_filter.append(trace.split(','))
opt['trace-filter'] = trace_filter
else:
opt['trace-filter'] = None
except getopt.GetoptError as err:
print(err)
sys.exit(2)
modelfile = args[0]
with open(modelfile, 'r') as f:
if '.json' in modelfile:
pta = PTA.from_json(json.load(f))
else:
pta = PTA.from_yaml(yaml.safe_load(f))
if 'timer-pin' in opt:
timer_pin = opt['timer-pin']
else:
timer_pin = 'GPIO::p1_0'
if 'dummy' in opt:
enum = dict()
if '.json' not in modelfile:
with open(modelfile, 'r') as f:
driver_definition = yaml.safe_load(f)
if 'dummygen' in driver_definition and 'enum' in driver_definition['dummygen']:
enum = driver_definition['dummygen']['enum']
repo = Repo('/home/derf/var/projects/multipass/build/repo.acp')
pta.set_random_energy_model()
if 'accounting' in opt:
accounting_object = get_accountingmethod(opt['accounting'])(opt['dummy'], pta)
else:
accounting_object = None
runs = list(pta.dfs(opt['depth'], with_arguments = True, with_parameters = True, trace_filter = opt['trace-filter']))
num_transitions = len(runs)
if len(runs) == 0:
print('DFS returned no traces -- perhaps your trace-filter is too restrictive?', file=sys.stderr)
sys.exit(1)
need_return_values = False
if next(filter(lambda x: len(x.return_value_handlers), pta.transitions), None):
need_return_values = True
sys.exit(0)
|