1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
|
package FLAT::NFA;
use strict;
use base 'FLAT::FA';
use FLAT::Transition;
=head1 NAME
FLAT::NFA - Nondeterministic finite automata
=head1 SYNOPSIS
A FLAT::NFA object is a finite automata whose transitions are labeled
either with characters or the empty string (epsilon).
=cut
sub new {
my $pkg = shift;
my $self = $pkg->SUPER::new(@_);
$self->{TRANS_CLASS} = "FLAT::Transition";
return $self;
}
sub singleton {
my ($class, $char) = @_;
my $nfa = $class->new;
if (not defined $char) {
$nfa->add_states(1);
$nfa->set_starting(0);
} elsif ($char eq "") {
$nfa->add_states(1);
$nfa->set_starting(0);
$nfa->set_accepting(0);
} else {
$nfa->add_states(2);
$nfa->set_starting(0);
$nfa->set_accepting(1);
$nfa->set_transition(0, 1, $char);
}
return $nfa;
}
sub as_nfa { $_[0]->clone }
sub union {
my @nfas = map { $_->as_nfa } @_;
my $result = $nfas[0]->clone;
$result->_swallow($_) for @nfas[1 .. $#nfas];
$result;
}
sub concat {
my @nfas = map { $_->as_nfa } @_;
my $result = $nfas[0]->clone;
my @newstate = ([ $result->get_states ]);
my @start = $result->get_starting;
for (1 .. $#nfas) {
push @newstate, [ $result->_swallow( $nfas[$_] ) ];
}
$result->unset_accepting($result->get_states);
$result->unset_starting($result->get_states);
$result->set_starting(@start);
for my $nfa_id (1 .. $#nfas) {
for my $s1 ($nfas[$nfa_id-1]->get_accepting) {
for my $s2 ($nfas[$nfa_id]->get_starting) {
$result->set_transition(
$newstate[$nfa_id-1][$s1],
$newstate[$nfa_id][$s2], "" );
}}
}
$result->set_accepting(
@{$newstate[-1]}[ $nfas[-1]->get_accepting ] );
$result;
}
sub kleene {
my $result = $_[0]->clone;
my ($newstart, $newfinal) = $result->add_states(2);
$result->set_transition($newstart, $_, "")
for $result->get_starting;
$result->unset_starting( $result->get_starting );
$result->set_starting($newstart);
$result->set_transition($_, $newfinal, "")
for $result->get_accepting;
$result->unset_accepting( $result->get_accepting );
$result->set_accepting($newfinal);
$result->set_transition($newstart, $newfinal, "");
$result->set_transition($newfinal, $newstart, "");
$result;
}
sub reverse {
my $self = $_[0]->clone;
$self->_transpose;
my @start = $self->get_starting;
my @final = $self->get_accepting;
$self->unset_accepting( $self->get_states );
$self->unset_starting( $self->get_states );
$self->set_accepting( @start );
$self->set_starting( @final );
$self;
}
###########
sub is_empty {
my $self = shift;
my @queue = $self->get_starting;
my %seen = map { $_ => 1 } @queue;
while (@queue) {
return 0 if grep { $self->is_accepting($_) } @queue;
@queue = grep { !$seen{$_}++ } $self->successors(\@queue);
}
return 1;
}
sub is_finite {
my $self = shift;
my @alphabet = $self->alphabet;
return 1 if @alphabet == 0;
my @queue = $self->get_starting;
my %seen = map { $_ => 1 } @queue;
while (@queue) {
@queue = grep { !$seen{$_}++ } $self->successors(\@queue);
}
for my $s ( grep { $self->is_accepting($_) } keys %seen ) {
@queue = $self->epsilon_closure($s);
%seen = map { $_ => 1 } @queue;
while (@queue) {
my @next = $self->epsilon_closure(
$self->successors(\@queue, \@alphabet) );
return 0 if grep { $s eq $_ } @next;
@queue = grep { !$seen{$_}++ } @next;
}
}
return 1;
}
sub epsilon_closure {
my ($self, @states) = @_;
my %seen = map { $_ => 1 } @states;
my @queue = @states;
while (@queue) {
@queue = grep { ! $seen{$_}++ } $self->successors( \@queue, "" );
}
keys %seen;
}
sub contains {
my ($self, $string) = @_;
my @active = $self->epsilon_closure( $self->get_starting );
for my $char (split //, $string) {
return 0 if ! @active;
@active = $self->epsilon_closure( $self->successors(\@active, $char) );
}
return !! grep { $self->is_accepting($_) } @active;
}
sub trace {
my ($self, $string) = @_;
my @trace = ([ $self->epsilon_closure( $self->get_starting ) ]);
for my $char (split //, $string) {
push @trace,
[ $self->epsilon_closure( $self->successors($trace[-1], $char) ) ];
}
return @trace;
}
############
sub _extend_alphabet {
my ($self, @alpha) = @_;
my %alpha = map { $_ => 1 } @alpha;
delete $alpha{$_} for $self->alphabet;
return if not keys %alpha;
my $trash = $self->add_states(1);
for my $state ($self->get_states) {
next if $state eq $trash;
for my $char (keys %alpha) {
$self->add_transition($state, $trash, $char);
}
}
$self->add_transition($trash, $trash, $self->alphabet);
}
######## transformations
# subset construction
sub as_dfa {
my $self = shift;
my $result = FLAT::DFA->new;
my %subset;
my %final = map { $_ => 1 } $self->get_accepting;
my @start = sort { $a <=> $b } $self->epsilon_closure( $self->get_starting );
my $start = $subset{ _SET_ID(@start) } = $result->add_states(1);
$result->set_starting($start);
$result->set_accepting( $start )
if grep $_, @final{@start};
my @queue = (\@start);
while (@queue) {
my @states = @{ shift @queue };
my $S = $subset{ _SET_ID(@states) };
for my $symb ($self->alphabet) {
my @to = $self->epsilon_closure(
$self->successors(\@states, $symb) );
if ( not exists $subset{_SET_ID(@to)} ) {
push @queue, \@to;
my $T = $subset{_SET_ID(@to)} = $result->add_states(1);
$result->set_accepting($T)
if grep $_, @final{@to};
}
$result->add_transition($S, $subset{ _SET_ID(@to) }, $symb);
}
}
$result;
}
############ Formatted output
# Format that Dr. Sukhamay KUNDU likes to use in his assignments :)
# This format is just a undirected graph - so transition and state info is lost
sub as_undirected {
my $self = shift;
my @symbols = $self->alphabet();
my @states = $self->get_states();
my %edges = ();
foreach (@states) {
my $s = $_;
foreach (@symbols) {
my $a = $_;
# foreach state, get all nodes connected to it; ignore symbols and
# treat transitions simply as directed
push(@{$edges{$s}},$self->successors($s,$a));
foreach ($self->successors($s,$a)) {
push(@{$edges{$_}},$s);
}
}
}
my @lines = (($#states+1));
foreach (sort{$a <=> $b;}(keys(%edges))) { #<-- iterate over numerically sorted list of keys
@{$edges{$_}} = sort {$a <=> $b;} $self->array_unique(@{$edges{$_}}); #<- make items unique and sort numerically
push(@lines,sprintf("%s(%s):%s",$_,($#{$edges{$_}}+1),join(' ',@{$edges{$_}})));
}
return join("\n",@lines);
}
# Format that Dr. Sukhamay KUNDU likes to use in his assignments :)
# This format is just a directed graph - so transition and state info is lost
sub as_digraph {
my $self = shift;
my @symbols = $self->alphabet();
my @states = $self->get_states();
my @lines = ();
foreach (@states) {
my $s = $_;
my @edges = ();
foreach (@symbols) {
my $a = $_;
# foreach state, get all nodes connected to it; ignore symbols and
# treat transitions simply as directed
push(@edges,$self->successors($s,$a));
}
@edges = sort {$a <=> $b;} $self->array_unique(@edges); #<- make items unique and sort numerically
push(@lines,sprintf("%s(%s): %s",$s,($#edges+1),join(' ',@edges)));
}
return sprintf("%s\n%s",($#states+1),join("\n",@lines));
}
# Graph Description Language, aiSee, etc
sub as_gdl {
my $self = shift;
my @states = map {
sprintf qq{node: { title:"%s" shape:circle borderstyle: %s}\n},
$_,
($self->is_accepting($_) ? "double bordercolor: red" : "solid")
} $self->get_states;
my @trans;
for my $s1 ($self->get_states) {
for my $s2 ($self->get_states) {
my $t = $self->get_transition($s1, $s2);
if (defined $t) {
push @trans, sprintf qq[edge: { source: "%s" target: "%s" label: "%s" arrowstyle: line }\n],
$s1, $s2, $t->as_string;
}
}}
return sprintf "graph: {\ndisplay_edge_labels: yes\n\n%s\n%s}\n",
join("", @states),
join("", @trans);
}
# Graphviz: dot, etc
## digraph, directed
sub as_graphviz {
my $self = shift;
my @states = map {
sprintf qq{%s [label="%s",shape=%s]\n},
$_,
($self->is_starting($_) ? "start ($_)" : "$_"),
($self->is_accepting($_) ? "doublecircle" : "circle")
} $self->get_states;
my @trans;
for my $s1 ($self->get_states) {
for my $s2 ($self->get_states) {
my $t = $self->get_transition($s1, $s2);
if (defined $t) {
push @trans, sprintf qq[%s -> %s [label="%s"]\n],
$s1, $s2, $t->as_string;
}
}}
return sprintf "digraph G {\ngraph [rankdir=LR]\n\n%s\n%s}\n",
join("", @states),
join("", @trans);
}
## undirected
sub as_undirected_graphviz {
my $self = shift;
my @states = map {
sprintf qq{%s [label="%s",shape=%s]\n},
$_,
("$_"),
("circle")
} $self->get_states;
my @trans;
for my $s1 ($self->get_states) {
for my $s2 ($self->get_states) {
my $t = $self->get_transition($s1, $s2);
if (defined $t) {
push @trans, sprintf qq[%s -- %s\n],
$s1, $s2, $t->as_string;
}
}}
return sprintf "graph G {\ngraph [rankdir=LR]\n\n%s\n%s}\n",
join("", @states),
join("", @trans);
}
sub _SET_ID { return join "\0", sort { $a <=> $b } @_; }
sub as_summary {
my $self = shift;
my $out = '';
$out .= sprintf ("States : ");
my @start;
my @final;
foreach ($self->get_states()) {
$out .= sprintf "'$_' ";
if ($self->is_starting($_)) {
push(@start,$_);
}
if ($self->is_accepting($_)) {
push(@final,$_);
}
}
$out .= sprintf ("\nStart State : '%s'\n",join('',@start));
$out .= sprintf ("Final State(s) : ");
foreach (@final) {
$out .= sprintf "'$_' ";
}
$out .= sprintf ("\nAlphabet : ");
foreach ($self->alphabet()) {
$out .= sprintf "'$_' ";
}
$out .= sprintf ("\nTransitions :\n");
my @trans;
for my $s1 ($self->get_states) {
for my $s2 ($self->get_states) {
my $t = $self->get_transition($s1, $s2);
if (defined $t) {
push @trans, sprintf qq[%s -> %s on "%s"\n],
$s1, $s2, $t->as_string;
}
}}
$out .= join('',@trans);
return $out;
}
1;
__END__
=head1 USAGE
In addition to implementing the interface specified in L<FLAT>, FLAT::NFA
objects provide the following NFA-specific methods:
=over
=item $nfa-E<gt>epsilon_closure(@states)
Returns the set of states (without duplicates) which are reachable from
@states via zero or more epsilon-labeled transitions.
=item $nfa-E<gt>trace($string)
Returns a list of N+1 arrayrefs, where N is the length of $string. The
I-th arrayref contains the states which are reachable from the starting
state(s) of $nfa after reading I characters of $string. Correctly accounts
for epsilon transitions.
=item $nfa-E<gt>as_undirected
Outputs FA in a format that may be easily read into an external program as
a description of an undirected graph.
=item $nfa-E<gt>as_digraph
Outputs FA in a format that may be easily read into an external program as
a description of an directed graph.
=item $nfa-E<gt>as_gdl
Outputs FA in Graph Description Language (GDL), including directed transitions
with symbols and state names labeled.
=item $nfa-E<gt>as_graphviz
Outputs FA in Graphviz format, including directed transitions with symbols and
and state names labeled. This output may be directly piped into any of the
Graphviz layout programs, and in turn one may output an image using a single
commandline instruction. C<fash> uses this function to implement its "nfa2gv"
command:
fash nfa2gv "a*b" | dot -Tpng > nfa.png
=item $nfa-E<gt>as_undirected_graphviz
Outputs FA in Graphviz format, with out the directed transitions or labels.
The output is suitable for any of the Graphvize layout programs, as discussed
above.
=item $nfa-E<gt>as_summary
Outputs a summary of the FA, including its states, symbols, and transition matrix.
It is useful for manually validating what the FA looks like.
=back
=head1 AUTHORS & ACKNOWLEDGEMENTS
FLAT is written by Mike Rosulek E<lt>mike at mikero dot comE<gt> and
Brett Estrade E<lt>estradb at gmail dot comE<gt>.
The initial version (FLAT::Legacy) by Brett Estrade was work towards an
MS thesis at the University of Southern Mississippi.
Please visit the Wiki at http://www.0x743.com/flat
=head1 LICENSE
This module is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.
|