summaryrefslogtreecommitdiff
path: root/lib/automata.py
blob: de40eb4c5ca8ad9524c3fc275f2ad6850e1795b5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
"""Classes and helper functions for PTA and other automata."""

from functions import AnalyticFunction, NormalizationFunction
import itertools

def _dict_to_list(input_dict: dict) -> list:
    return [input_dict[x] for x in sorted(input_dict.keys())]

def _attribute_to_json(static_value: float, param_function: AnalyticFunction) -> dict:
    ret = {
        'static' : static_value
    }
    if param_function:
        ret['function'] = {
            'raw' : param_function._model_str,
            'regression_args' : list(param_function._regression_args)
        }
    return ret

class State:
    """A single PTA state."""

    def __init__(self, name: str, power: float = 0,
            power_function: AnalyticFunction = None):
        u"""
        Create a new PTA state.

        arguments:
        name -- state name
        power -- static state power in µW
        power_function -- parameterized state power in µW
        """
        self.name = name
        self.power = power
        self.power_function = power_function
        self.outgoing_transitions = {}

    def add_outgoing_transition(self, new_transition: object):
        """Add a new outgoing transition."""
        self.outgoing_transitions[new_transition.name] = new_transition

    def get_energy(self, duration: float, param_dict: dict = {}) -> float:
        u"""
        Return energy spent in state in pJ.

        arguments:
        duration -- duration in µs
        param_dict -- current parameters
        """
        if self.power_function:
            return self.power_function.eval(_dict_to_list(param_dict)) * duration
        return self.power * duration

    def get_transition(self, transition_name: str) -> object:
        """Return Transition object for outgoing transtion transition_name."""
        return self.outgoing_transitions[transition_name]

    def has_interrupt_transitions(self) -> bool:
        """Check whether this state has any outgoing interrupt transitions."""
        for trans in self.outgoing_transitions.values():
            if trans.is_interrupt:
                return True
        return False

    def get_next_interrupt(self, parameters: dict) -> object:
        """
        Return the outgoing interrupt transition with the lowet timeout.

        Must only be called if has_interrupt_transitions returned true.

        arguments:
        parameters -- current parameter values
        """
        interrupts = filter(lambda x: x.is_interrupt, self.outgoing_transitions.values())
        interrupts = sorted(interrupts, key = lambda x: x.get_timeout(parameters))
        return interrupts[0]

    def dfs(self, depth: int, with_arguments: bool = False, trace_filter = None):
        """
        Return a generator object for depth-first search over all outgoing transitions.

        arguments:
        depth -- search depth
        with_arguments -- perform dfs with function+argument transitions instead of just function transitions.
        trace_filter -- list of lists. Each sub-list is a trace. Only traces matching one of the provided sub-lists are returned.
            E.g. trace_filter = [['init', 'foo'], ['init', 'bar']] will only return traces with init as first and foo or bar as second element.
            trace_filter = [['init', 'foo', '$'], ['init', 'bar'], '$'] will only return the traces ['init', 'foo'] and ['init', 'bar'].
        """

        # A '$' entry in trace_filter indicates that the trace should (successfully) terminate here regardless of `depth`.
        if trace_filter is not None and next(filter(lambda x: x == '$', map(lambda x: x[0], trace_filter)), None) is not None:
            yield []
        # there may be other entries in trace_filter that still yield results.
        if depth == 0:
            for trans in self.outgoing_transitions.values():
                if trace_filter is not None and len(list(filter(lambda x: x == trans.name, map(lambda x: x[0], trace_filter)))) == 0:
                    continue
                if with_arguments:
                    if trans.argument_combination == 'cartesian':
                        for args in itertools.product(*trans.argument_values):
                            yield [(trans, args)]
                    else:
                        for args in zip(*trans.argument_values):
                            yield [(trans, args)]
                else:
                    yield [(trans,)]
        else:
            for trans in self.outgoing_transitions.values():
                if trace_filter is not None and next(filter(lambda x: x == trans.name, map(lambda x: x[0], trace_filter)), None) is None:
                    continue
                if trace_filter is not None:
                    new_trace_filter = map(lambda x: x[1:], filter(lambda x: x[0] == trans.name, trace_filter))
                    new_trace_filter = list(filter(len, new_trace_filter))
                    if len(new_trace_filter) == 0:
                        new_trace_filter = None
                else:
                    new_trace_filter = None
                for suffix in trans.destination.dfs(depth - 1, with_arguments = with_arguments, trace_filter = new_trace_filter):
                    if with_arguments:
                        if trans.argument_combination == 'cartesian':
                            for args in itertools.product(*trans.argument_values):
                                new_suffix = [(trans, args)]
                                new_suffix.extend(suffix)
                                yield new_suffix
                        else:
                            if len(trans.argument_values):
                                arg_values = zip(*trans.argument_values)
                            else:
                                arg_values = [tuple()]
                            for args in arg_values:
                                new_suffix = [(trans, args)]
                                new_suffix.extend(suffix)
                                yield new_suffix
                    else:
                        new_suffix = [(trans,)]
                        new_suffix.extend(suffix)
                        yield new_suffix

    def to_json(self) -> dict:
        """Return JSON encoding of this state object."""
        ret = {
            'name' : self.name,
            'power' : _attribute_to_json(self.power, self.power_function)
        }
        return ret

class Transition:
    """A single PTA transition with one origin and one destination state."""

    def __init__(self, orig_state: State, dest_state: State, name: str,
            energy: float = 0, energy_function: AnalyticFunction = None,
            duration: float = 0, duration_function: AnalyticFunction = None,
            timeout: float = 0, timeout_function: AnalyticFunction = None,
            is_interrupt: bool = False,
            arguments: list = [],
            argument_values: list = [],
            argument_combination: str = 'cartesian', # or 'zip'
            param_update_function = None,
            arg_to_param_map: dict = None,
            set_param = None,
            return_value_handlers: list = []):
        """
        Create a new transition between two PTA states.

        arguments:
        orig_state -- origin state
        dest_state -- destination state
        name -- transition name, typically the same as a driver/library function name
        """
        self.name = name
        self.origin = orig_state
        self.destination = dest_state
        self.energy = energy
        self.energy_function = energy_function
        self.duration = duration
        self.duration_function = duration_function
        self.timeout = timeout
        self.timeout_function = timeout_function
        self.is_interrupt = is_interrupt
        self.arguments = arguments.copy()
        self.argument_values = argument_values.copy()
        self.argument_combination = argument_combination
        self.param_update_function = param_update_function
        self.arg_to_param_map = arg_to_param_map
        self.set_param = set_param
        self.return_value_handlers = return_value_handlers

    def get_duration(self, param_dict: dict = {}, args: list = []) -> float:
        u"""
        Return transition duration in µs.

        arguments:
        param_dict -- current parameter values
        args -- function arguments
        """
        if self.duration_function:
            return self.duration_function.eval(_dict_to_list(param_dict), args)
        return self.duration

    def get_energy(self, param_dict: dict = {}, args: list = []) -> float:
        u"""
        Return transition energy cost in pJ.

        arguments:
        param_dict -- current parameter values
        args -- function arguments
        """
        if self.energy_function:
            return self.energy_function.eval(_dict_to_list(param_dict), args)
        return self.energy

    def get_timeout(self, param_dict: dict = {}) -> float:
        u"""
        Return transition timeout in µs.

        Returns 0 if the transition does not have a timeout.

        arguments:
        param_dict -- current parameter values
        args -- function arguments
        """
        if self.timeout_function:
            return self.timeout_function.eval(_dict_to_list(param_dict))
        return self.timeout

    def get_params_after_transition(self, param_dict: dict, args: list = []) -> dict:
        """
        Return the new parameter dict after taking this transition.

        parameter values may be affected by this transition's update function,
        it's argument-to-param map, and its set_param settings.
        """
        if self.param_update_function:
            return self.param_update_function(param_dict, args)
        ret = param_dict.copy()
        if self.arg_to_param_map:
            for k, v in self.arg_to_param_map.items():
                ret[k] = args[v]
        if self.set_param:
            for k, v in self.set_param.items():
                ret[k] = v
        return ret

    def to_json(self) -> dict:
        """Return JSON encoding of this transition object."""
        ret = {
            'name' : self.name,
            'origin' : self.origin.name,
            'destination' : self.destination.name,
            'is_interrupt' : self.is_interrupt,
            'arguments' : self.arguments,
            'argument_values' : self.argument_values,
            'argument_combination' : self.argument_combination,
            'arg_to_param_map' : self.arg_to_param_map,
            'set_param' : self.set_param,
            'duration' : _attribute_to_json(self.duration, self.duration_function),
            'energy' : _attribute_to_json(self.energy, self.energy_function),
            'timeout' : _attribute_to_json(self.timeout, self.timeout_function),
        }
        return ret

def _json_function_to_analytic_function(base, attribute: str, parameters: list):
    if attribute in base and 'function' in base[attribute]:
        base = base[attribute]['function']
        return AnalyticFunction(base['raw'], parameters, 0, regression_args = base['regression_args'])
    return None

def _json_get_static(base, attribute: str):
    if attribute in base:
        return base[attribute]['static']
    return 0

class PTA:
    """
    A parameterized priced timed automaton. All states are accepting.

    Suitable for simulation, model storage, and (soon) benchmark generation.
    """

    def __init__(self, state_names: list = [],
            accepting_states: list = None,
            parameters: list = [], initial_param_values: list = None,
            codegen: dict = {}, parameter_normalization: dict = None):
        """
        Return a new PTA object.

        arguments:
        state_names -- names of PTA states. Note that the PTA always contains
            an initial UNINITIALIZED state, regardless of the content of state_names.
        accepting_states -- names of accepting states. By default, all states are accepting
        parameters -- names of PTA parameters
        initial_param_values -- initial value for each parameter
        instance -- class used for generated C++ code
        header -- header include path for C++ class definition
        parameter_normalization -- dict mapping driver API parameter values to hardware values, e.g. a bitrate register value to an actual bitrate in kbit/s.
            Each parameter key has in turn a dict value. Supported entries:
            `enum`: Mapping of enum descriptors (keys) to parameter values. Note that the mapping is not required to correspond to the driver API.
        """
        self.state = dict([[state_name, State(state_name)] for state_name in state_names])
        self.accepting_states = accepting_states.copy() if accepting_states else None
        self.parameters = parameters.copy()
        self.parameter_normalization = parameter_normalization
        self.codegen = codegen
        if initial_param_values:
            self.initial_param_values = initial_param_values.copy()
        else:
            self.initial_param_values = [None for x in self.parameters]
        self.transitions = []

        if not 'UNINITIALIZED' in state_names:
            self.state['UNINITIALIZED'] = State('UNINITIALIZED')

    def normalize_parameters(self, param_dict):
        if self.parameter_normalization is None:
            return param_dict.copy()
        normalized_param = param_dict.copy()
        for parameter, value in param_dict.items():
            if parameter in self.parameter_normalization:
                if 'enum' in self.parameter_normalization[parameter] and value in self.parameter_normalization[parameter]['enum']:
                    normalized_param[parameter] = self.parameter_normalization[parameter]['enum'][value]
                if 'formula' in self.parameter_normalization[parameter]:
                    normalization_formula = NormalizationFunction(self.parameter_normalization[parameter]['formula'])
                    normalized_param[parameter] = normalization_formula.eval(value)
        return normalized_param

    @classmethod
    def from_json(cls, json_input: dict):
        """
        Return a PTA created from the provided JSON data.

        Compatible with the to_json method.
        """
        if 'transition' in json_input:
            return cls.from_legacy_json(json_input)

        kwargs = dict()
        for key in ('state_names', 'parameters', 'initial_param_values', 'accepting_states'):
            if key in json_input:
                kwargs[key] = json_input[key]
        pta = cls(**kwargs)
        for name, state in json_input['state'].items():
            power_function = _json_function_to_analytic_function(state, 'power', pta.parameters)
            pta.add_state(name, power = _json_get_static(state, 'power'), power_function = power_function)
        for transition in json_input['transitions']:
            duration_function = _json_function_to_analytic_function(transition, 'duration', pta.parameters)
            energy_function = _json_function_to_analytic_function(transition, 'energy', pta.parameters)
            timeout_function = _json_function_to_analytic_function(transition, 'timeout', pta.parameters)
            kwargs = dict()
            for key in ['arg_to_param_map', 'argument_values', 'argument_combination']:
                if key in transition:
                    kwargs[key] = transition[key]
            origins = transition['origin']
            if type(origins) != list:
                origins = [origins]
            for origin in origins:
                pta.add_transition(origin, transition['destination'],
                    transition['name'],
                    duration = _json_get_static(transition, 'duration'),
                    duration_function = duration_function,
                    energy = _json_get_static(transition, 'energy'),
                    energy_function = energy_function,
                    timeout = _json_get_static(transition, 'timeout'),
                    timeout_function = timeout_function,
                    **kwargs
                )

        return pta

    @classmethod
    def from_legacy_json(cls, json_input: dict):
        """
        Return a PTA created from the provided JSON data.

        Compatible with the legacy dfatool/perl format.
        """
        kwargs = {
            'parameters' : list(),
            'initial_param_values': list(),
        }

        for param in sorted(json_input['parameter'].keys()):
            kwargs['parameters'].append(param)
            kwargs['initial_param_values'].append(json_input['parameter'][param]['default'])

        pta = cls(**kwargs)

        for name, state in json_input['state'].items():
            pta.add_state(name, power = float(state['power']['static']))

        for trans_name in sorted(json_input['transition'].keys()):
            transition = json_input['transition'][trans_name]
            destination = transition['destination']
            arguments = list()
            argument_values = list()
            is_interrupt = False
            if transition['level'] == 'epilogue':
                is_interrupt = True
            if type(destination) == list:
                destination = destination[0]
            for arg in transition['parameters']:
                arguments.append(arg['name'])
                argument_values.append(arg['values'])
            for origin in transition['origins']:
                pta.add_transition(origin, destination, trans_name,
                    arguments = arguments, argument_values = argument_values,
                    is_interrupt = is_interrupt)

        return pta

    @classmethod
    def from_yaml(cls, yaml_input: dict):
        """Return a PTA created from the YAML DFA format (passed as dict)."""

        kwargs = dict()

        if 'parameters' in yaml_input:
            kwargs['parameters'] = yaml_input['parameters']

        if 'initial_param_values' in yaml_input:
            kwargs['initial_param_values'] = yaml_input['initial_param_values']

        if 'states' in yaml_input:
            kwargs['state_names'] = yaml_input['states']
        # else: set to UNINITIALIZED by class constructor

        if 'codegen' in yaml_input:
            kwargs['codegen'] = yaml_input['codegen']

        if 'parameter_normalization' in yaml_input:
            kwargs['parameter_normalization'] = yaml_input['parameter_normalization']

        pta = cls(**kwargs)

        for trans_name in sorted(yaml_input['transition'].keys()):
            kwargs = dict()
            transition = yaml_input['transition'][trans_name]
            arguments = list()
            argument_values = list()
            arg_to_param_map = dict()
            if 'arguments' in transition:
                for i, argument in enumerate(transition['arguments']):
                    arguments.append(argument['name'])
                    argument_values.append(argument['values'])
                    if 'parameter' in argument:
                        arg_to_param_map[argument['parameter']] = i
            if 'argument_combination' in transition:
                kwargs['argument_combination'] = transition['argument_combination']
            if 'set_param' in transition:
                kwargs['set_param'] = transition['set_param']
            if 'is_interrupt' in transition:
                kwargs['is_interrupt'] = transition['is_interrupt']
            if 'return_value' in transition:
                kwargs['return_value_handlers'] = transition['return_value']
            if not 'src' in transition:
                transition['src'] = ['UNINITIALIZED']
            if not 'dst' in transition:
                transition['dst'] = 'UNINITIALIZED'
            for origin in transition['src']:
                pta.add_transition(origin, transition['dst'], trans_name,
                    arguments = arguments, argument_values = argument_values,
                    arg_to_param_map = arg_to_param_map,
                    **kwargs)

        return pta

    def to_json(self) -> dict:
        """
        Return JSON encoding of this PTA.

        Compatible with the from_json method.
        """
        ret = {
            'parameters' : self.parameters,
            'initial_param_values' : self.initial_param_values,
            'state' : dict([[state.name, state.to_json()] for state in self.state.values()]),
            'transitions' : [trans.to_json() for trans in self.transitions],
            'accepting_states' : self.accepting_states,
        }
        return ret

    def add_state(self, state_name: str, **kwargs):
        """
        Add a new state.

        See the State() documentation for acceptable arguments.
        """
        if 'power_function' in kwargs and type(kwargs['power_function']) != AnalyticFunction and kwargs['power_function'] != None:
            kwargs['power_function'] = AnalyticFunction(kwargs['power_function'],
                self.parameters, 0)
        self.state[state_name] = State(state_name, **kwargs)

    def add_transition(self, orig_state: str, dest_state: str, function_name: str, **kwargs):
        """
        Add function_name as new transition from orig_state to dest_state.

        arguments:
        orig_state -- origin state name. Must be known to PTA
        dest_state -- destination state name. Must be known to PTA.
        function_name -- function name
        kwargs -- see Transition() documentation
        """
        orig_state = self.state[orig_state]
        dest_state = self.state[dest_state]
        for key in ('duration_function', 'energy_function', 'timeout_function'):
            if key in kwargs and kwargs[key] != None and type(kwargs[key]) != AnalyticFunction:
                kwargs[key] = AnalyticFunction(kwargs[key], self.parameters, 0)

        new_transition = Transition(orig_state, dest_state, function_name, **kwargs)
        self.transitions.append(new_transition)
        orig_state.add_outgoing_transition(new_transition)

    def get_transition_id(self, transition: Transition) -> int:
        """Return PTA-specific ID of transition."""
        return self.transitions.index(transition)

    def get_initial_param_dict(self):
        return dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))])


    def _dfs_with_param(self, generator, param_dict):
        for trace in generator:
            param = param_dict.copy()
            ret = list()
            for elem in trace:
                transition, arguments = elem
                param = transition.get_params_after_transition(param, arguments)
                ret.append((transition, arguments, self.normalize_parameters(param)))
            yield ret

    def dfs(self, depth: int = 10, orig_state: str = 'UNINITIALIZED', param_dict: dict = None, with_parameters: bool = False, **kwargs):
        """
        Return a generator object for depth-first search starting at orig_state.

        arguments:
        depth: search depth
        orig_state: initial state for depth-first search
        param_dict: initial parameter values
        with_arguments: perform dfs with argument values
        with_parameters: include parameters in trace?
        trace_filter: list of lists. Each sub-list is a trace. Only traces matching one of the provided sub-lists are returned.

        The returned generator emits traces. Each trace consts of a list of
        tuples describing the corresponding transition and (if enabled)
        arguments and parameters. When both with_arguments and with_parameters
        are True, each transition is a (Transition object, argument list, parameter dict) tuple.

        Note that the parameter dict refers to parameter values _after_
        passing the corresponding transition. Although this may seem odd at
        first, it is useful when analyzing measurements: Properties of
        the state following this transition may be affected by the parameters
        set by the transition, so it is useful to have those readily available.
        """
        if with_parameters and not param_dict:
            param_dict = self.get_initial_param_dict()

        if with_parameters and not 'with_arguments' in kwargs:
            raise ValueError("with_parameters = True requires with_arguments = True")

        if self.accepting_states:
            generator = filter(lambda x: x[-1][0].destination.name in self.accepting_states,
                self.state[orig_state].dfs(depth, **kwargs))
        else:
            generator = self.state[orig_state].dfs(depth, **kwargs)

        if with_parameters:
            return self._dfs_with_param(generator, param_dict)
        else:
            return generator

    def simulate(self, trace: list, orig_state: str = 'UNINITIALIZED'):
        total_duration = 0.
        total_energy = 0.
        state = self.state[orig_state]
        param_dict = dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))])
        for function in trace:
            function_name = function[0]
            function_args = function[1 : ]
            if function_name == 'sleep':
                duration = function_args[0]
                total_energy += state.get_energy(duration, param_dict)
                total_duration += duration
            else:
                transition = state.get_transition(function_name)
                total_duration += transition.get_duration(param_dict, function_args)
                total_energy += transition.get_energy(param_dict, function_args)
                param_dict = transition.get_params_after_transition(param_dict, function_args)
                state = transition.destination
                while (state.has_interrupt_transitions()):
                    transition = state.get_next_interrupt(param_dict)
                    duration = transition.get_timeout(param_dict)
                    total_duration += duration
                    total_energy += state.get_energy(duration, param_dict)
                    param_dict = transition.get_params_after_transition(param_dict)
                    state = transition.destination

        return total_energy, total_duration, state, param_dict

    def update(self, static_model, param_model):
        for state in self.state.values():
            if state.name != 'UNINITIALIZED':
                state.power = static_model(state.name, 'power')
                if param_model(state.name, 'power'):
                    state.power_function = param_model(state.name, 'power')['function']
                print(state.name, state.power, state.power_function.__dict__)