1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
|
"""Classes and helper functions for PTA and other automata."""
from functions import AnalyticFunction
import itertools
def _dict_to_list(input_dict: dict) -> list:
return [input_dict[x] for x in sorted(input_dict.keys())]
def _attribute_to_json(static_value: float, param_function: AnalyticFunction) -> dict:
ret = {
'static' : static_value
}
if param_function:
ret['function'] = {
'raw' : param_function._model_str,
'regression_args' : list(param_function._regression_args)
}
return ret
class State:
"""A single PTA state."""
def __init__(self, name: str, power: float = 0,
power_function: AnalyticFunction = None):
u"""
Create a new PTA state.
arguments:
name -- state name
power -- static state power in µW
power_function -- parameterized state power in µW
"""
self.name = name
self.power = power
self.power_function = power_function
self.outgoing_transitions = {}
def add_outgoing_transition(self, new_transition: object):
"""Add a new outgoing transition."""
self.outgoing_transitions[new_transition.name] = new_transition
def get_energy(self, duration: float, param_dict: dict = {}) -> float:
u"""
Return energy spent in state in pJ.
arguments:
duration -- duration in µs
param_dict -- current parameters
"""
if self.power_function:
return self.power_function.eval(_dict_to_list(param_dict)) * duration
return self.power * duration
def get_transition(self, transition_name: str) -> object:
"""Return Transition object for outgoing transtion transition_name."""
return self.outgoing_transitions[transition_name]
def has_interrupt_transitions(self) -> bool:
"""Check whether this state has any outgoing interrupt transitions."""
for trans in self.outgoing_transitions.values():
if trans.is_interrupt:
return True
return False
def get_next_interrupt(self, parameters: dict) -> object:
"""
Return the outgoing interrupt transition with the lowet timeout.
Must only be called if has_interrupt_transitions returned true.
arguments:
parameters -- current parameter values
"""
interrupts = filter(lambda x: x.is_interrupt, self.outgoing_transitions.values())
interrupts = sorted(interrupts, key = lambda x: x.get_timeout(parameters))
return interrupts[0]
def dfs(self, depth: int, with_arguments: bool = False):
"""
Return a generator object for depth-first search over all outgoing transitions.
arguments:
depth -- search depth
with_arguments -- perform dfs with function+argument transitions instead of just function transitions.
"""
if depth == 0:
for trans in self.outgoing_transitions.values():
if with_arguments:
if trans.argument_combination == 'cartesian':
for args in itertools.product(*trans.argument_values):
yield [(trans, args)]
else:
for args in zip(*trans.argument_values):
yield [(trans, args)]
else:
yield [(trans,)]
else:
for trans in self.outgoing_transitions.values():
for suffix in trans.destination.dfs(depth - 1, with_arguments = with_arguments):
if with_arguments:
if trans.argument_combination == 'cartesian':
for args in itertools.product(*trans.argument_values):
new_suffix = [(trans, args)]
new_suffix.extend(suffix)
yield new_suffix
else:
if len(trans.argument_values):
arg_values = zip(*trans.argument_values)
else:
arg_values = [tuple()]
for args in arg_values:
new_suffix = [(trans, args)]
new_suffix.extend(suffix)
yield new_suffix
else:
new_suffix = [(trans,)]
new_suffix.extend(suffix)
yield new_suffix
def to_json(self) -> dict:
"""Return JSON encoding of this state object."""
ret = {
'name' : self.name,
'power' : _attribute_to_json(self.power, self.power_function)
}
return ret
class Transition:
"""A single PTA transition with one origin and one destination state."""
def __init__(self, orig_state: State, dest_state: State, name: str,
energy: float = 0, energy_function: AnalyticFunction = None,
duration: float = 0, duration_function: AnalyticFunction = None,
timeout: float = 0, timeout_function: AnalyticFunction = None,
is_interrupt: bool = False,
arguments: list = [],
argument_values: list = [],
argument_combination: str = 'cartesian', # or 'zip'
param_update_function = None,
arg_to_param_map: dict = None,
set_param = None):
"""
Create a new transition between two PTA states.
arguments:
orig_state -- origin state
dest_state -- destination state
name -- transition name, typically the same as a driver/library function name
"""
self.name = name
self.origin = orig_state
self.destination = dest_state
self.energy = energy
self.energy_function = energy_function
self.duration = duration
self.duration_function = duration_function
self.timeout = timeout
self.timeout_function = timeout_function
self.is_interrupt = is_interrupt
self.arguments = arguments.copy()
self.argument_values = argument_values.copy()
self.argument_combination = argument_combination
self.param_update_function = param_update_function
self.arg_to_param_map = arg_to_param_map
self.set_param = set_param
def get_duration(self, param_dict: dict = {}, args: list = []) -> float:
u"""
Return transition duration in µs.
arguments:
param_dict -- current parameter values
args -- function arguments
"""
if self.duration_function:
return self.duration_function.eval(_dict_to_list(param_dict), args)
return self.duration
def get_energy(self, param_dict: dict = {}, args: list = []) -> float:
u"""
Return transition energy cost in pJ.
arguments:
param_dict -- current parameter values
args -- function arguments
"""
if self.energy_function:
return self.energy_function.eval(_dict_to_list(param_dict), args)
return self.energy
def get_timeout(self, param_dict: dict = {}) -> float:
u"""
Return transition timeout in µs.
Returns 0 if the transition does not have a timeout.
arguments:
param_dict -- current parameter values
args -- function arguments
"""
if self.timeout_function:
return self.timeout_function.eval(_dict_to_list(param_dict))
return self.timeout
def get_params_after_transition(self, param_dict: dict, args: list = []) -> dict:
"""
Return the new parameter dict after taking this transition.
parameter values may be affected by this transition's update function,
it's argument-to-param map, and its set_param settings.
"""
if self.param_update_function:
return self.param_update_function(param_dict, args)
ret = param_dict.copy()
if self.arg_to_param_map:
for k, v in self.arg_to_param_map.items():
ret[k] = args[v]
if self.set_param:
for k, v in self.set_param.items():
ret[k] = v
return ret
def to_json(self) -> dict:
"""Return JSON encoding of this transition object."""
ret = {
'name' : self.name,
'origin' : self.origin.name,
'destination' : self.destination.name,
'is_interrupt' : self.is_interrupt,
'arguments' : self.arguments,
'argument_values' : self.argument_values,
'argument_combination' : self.argument_combination,
'arg_to_param_map' : self.arg_to_param_map,
'set_param' : self.set_param,
'duration' : _attribute_to_json(self.duration, self.duration_function),
'energy' : _attribute_to_json(self.energy, self.energy_function),
'timeout' : _attribute_to_json(self.timeout, self.timeout_function),
}
return ret
def _json_function_to_analytic_function(base, attribute: str, parameters: list):
if attribute in base and 'function' in base[attribute]:
base = base[attribute]['function']
return AnalyticFunction(base['raw'], parameters, 0, regression_args = base['regression_args'])
return None
def _json_get_static(base, attribute: str):
if attribute in base:
return base[attribute]['static']
return 0
class PTA:
"""
A parameterized priced timed automaton. All states are accepting.
Suitable for simulation, model storage, and (soon) benchmark generation.
"""
def __init__(self, state_names: list = [],
accepting_states: list = None,
parameters: list = [], initial_param_values: list = None):
"""
Return a new PTA object.
arguments:
state_names -- names of PTA states. Note that the PTA always contains
an initial UNINITIALIZED state, regardless of the content of state_names.
accepting_states -- names of accepting states. By default, all states are accepting
parameters -- names of PTA parameters
initial_param_values -- initial value for each parameter
"""
self.state = dict([[state_name, State(state_name)] for state_name in state_names])
self.accepting_states = accepting_states.copy() if accepting_states else None
self.parameters = parameters.copy()
if initial_param_values:
self.initial_param_values = initial_param_values.copy()
else:
self.initial_param_values = [None for x in self.parameters]
self.transitions = []
if not 'UNINITIALIZED' in state_names:
self.state['UNINITIALIZED'] = State('UNINITIALIZED')
@classmethod
def from_json(cls, json_input: dict):
"""
Return a PTA created from the provided JSON data.
Compatible with the to_json method.
"""
if 'transition' in json_input:
return cls.from_legacy_json(json_input)
kwargs = dict()
for key in ('state_names', 'parameters', 'initial_param_values', 'accepting_states'):
if key in json_input:
kwargs[key] = json_input[key]
pta = cls(**kwargs)
for name, state in json_input['state'].items():
power_function = _json_function_to_analytic_function(state, 'power', pta.parameters)
pta.add_state(name, power = _json_get_static(state, 'power'), power_function = power_function)
for transition in json_input['transitions']:
duration_function = _json_function_to_analytic_function(transition, 'duration', pta.parameters)
energy_function = _json_function_to_analytic_function(transition, 'energy', pta.parameters)
timeout_function = _json_function_to_analytic_function(transition, 'timeout', pta.parameters)
kwargs = dict()
for key in ['arg_to_param_map', 'argument_values', 'argument_combination']:
if key in transition:
kwargs[key] = transition[key]
origins = transition['origin']
if type(origins) != list:
origins = [origins]
for origin in origins:
pta.add_transition(origin, transition['destination'],
transition['name'],
duration = _json_get_static(transition, 'duration'),
duration_function = duration_function,
energy = _json_get_static(transition, 'energy'),
energy_function = energy_function,
timeout = _json_get_static(transition, 'timeout'),
timeout_function = timeout_function,
**kwargs
)
return pta
@classmethod
def from_legacy_json(cls, json_input: dict):
"""
Return a PTA created from the provided JSON data.
Compatible with the legacy dfatool/perl format.
"""
kwargs = {
'parameters' : list(),
'initial_param_values': list(),
}
for param in sorted(json_input['parameter'].keys()):
kwargs['parameters'].append(param)
kwargs['initial_param_values'].append(json_input['parameter'][param]['default'])
pta = cls(**kwargs)
for name, state in json_input['state'].items():
pta.add_state(name, power = float(state['power']['static']))
for trans_name in sorted(json_input['transition'].keys()):
transition = json_input['transition'][trans_name]
destination = transition['destination']
arguments = list()
argument_values = list()
is_interrupt = False
if transition['level'] == 'epilogue':
is_interrupt = True
if type(destination) == list:
destination = destination[0]
for arg in transition['parameters']:
arguments.append(arg['name'])
argument_values.append(arg['values'])
for origin in transition['origins']:
pta.add_transition(origin, destination, trans_name,
arguments = arguments, argument_values = argument_values,
is_interrupt = is_interrupt)
return pta
def to_json(self) -> dict:
"""
Return JSON encoding of this PTA.
Compatible with the from_json method.
"""
ret = {
'parameters' : self.parameters,
'initial_param_values' : self.initial_param_values,
'state' : dict([[state.name, state.to_json()] for state in self.state.values()]),
'transitions' : [trans.to_json() for trans in self.transitions],
'accepting_states' : self.accepting_states,
}
return ret
def add_state(self, state_name: str, **kwargs):
"""
Add a new state.
See the State() documentation for acceptable arguments.
"""
if 'power_function' in kwargs and type(kwargs['power_function']) != AnalyticFunction and kwargs['power_function'] != None:
kwargs['power_function'] = AnalyticFunction(kwargs['power_function'],
self.parameters, 0)
self.state[state_name] = State(state_name, **kwargs)
def add_transition(self, orig_state: str, dest_state: str, function_name: str, **kwargs):
"""
Add function_name as new transition from orig_state to dest_state.
arguments:
orig_state -- origin state name. Must be known to PTA
dest_state -- destination state name. Must be known to PTA.
function_name -- function name
kwargs -- see Transition() documentation
"""
orig_state = self.state[orig_state]
dest_state = self.state[dest_state]
for key in ('duration_function', 'energy_function', 'timeout_function'):
if key in kwargs and kwargs[key] != None and type(kwargs[key]) != AnalyticFunction:
kwargs[key] = AnalyticFunction(kwargs[key], self.parameters, 0)
new_transition = Transition(orig_state, dest_state, function_name, **kwargs)
self.transitions.append(new_transition)
orig_state.add_outgoing_transition(new_transition)
def get_transition_id(self, transition: Transition) -> int:
"""Return PTA-specific ID of transition."""
return self.transitions.index(transition)
def dfs(self, depth: int = 10, orig_state: str = 'UNINITIALIZED', **kwargs):
"""
Return a generator object for depth-first search starting at orig_state.
arguments:
depth -- search depth
orig_state -- initial state for depth-first search
"""
if self.accepting_states:
return filter(lambda x: x[-1][0].destination.name in self.accepting_states,
self.state[orig_state].dfs(depth, **kwargs))
else:
return self.state[orig_state].dfs(depth, **kwargs)
def simulate(self, trace: list, orig_state: str = 'UNINITIALIZED'):
total_duration = 0.
total_energy = 0.
state = self.state[orig_state]
param_dict = dict([[self.parameters[i], self.initial_param_values[i]] for i in range(len(self.parameters))])
for function in trace:
function_name = function[0]
function_args = function[1 : ]
if function_name == 'sleep':
duration = function_args[0]
total_energy += state.get_energy(duration, param_dict)
total_duration += duration
else:
transition = state.get_transition(function_name)
total_duration += transition.get_duration(param_dict, function_args)
total_energy += transition.get_energy(param_dict, function_args)
param_dict = transition.get_params_after_transition(param_dict, function_args)
state = transition.destination
while (state.has_interrupt_transitions()):
transition = state.get_next_interrupt(param_dict)
duration = transition.get_timeout(param_dict)
total_duration += duration
total_energy += state.get_energy(duration, param_dict)
param_dict = transition.get_params_after_transition(param_dict)
state = transition.destination
return total_energy, total_duration, state, param_dict
def update(self, static_model, param_model):
for state in self.state.values():
if state.name != 'UNINITIALIZED':
state.power = static_model(state.name, 'power')
if param_model(state.name, 'power'):
state.power_function = param_model(state.name, 'power')['function']
print(state.name, state.power, state.power_function.__dict__)
|