1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
|
"""Code generators for multipass dummy drivers for online model evaluation."""
from automata import PTA, Transition
from modular_arithmetic import simulate_int_type
import numpy as np
header_template = """
#ifndef DFATOOL_{name}_H
#define DFATOOL_{name}_H
{includes}
class {name}
{{
private:
{name}(const {name} ©);
{private_variables}
{private_functions}
public:
{enums}
{public_variables}
{public_functions}
}};
extern {name} {name_lower};
#endif
"""
implementation_template = """
#include "driver/dummy.h"
{functions}
{name} {name_lower};
"""
array_template = """
{type} const {name}[{length}] = {{{elements}}};
"""
class ClassFunction:
def __init__(self, class_name, return_type, name, arguments, body):
"""
Create a new C++ class method wrapper.
:param class_name: Class name
:param return_type: function return type
:param name: function name
:param arguments: list of arguments (must contain type and name)
:param body: function body (str)
"""
self.class_name = class_name
self.return_type = return_type
self.name = name
self.arguments = arguments
self.body = body
def get_definition(self):
return '{} {}({});'.format(self.return_type, self.name, ', '.join(self.arguments))
def get_implementation(self):
if self.body is None:
return ''
return '{} {}::{}({}) {{\n{}}}\n'.format(self.return_type, self.class_name, self.name, ', '.join(self.arguments), self.body)
def get_accountingmethod(method):
"""Return AccountingMethod class for method."""
if method == 'static_state_immediate':
return StaticStateOnlyAccountingImmediateCalculation
if method == 'static_state':
return StaticStateOnlyAccounting
if method == 'static_statetransition_immediate':
return StaticAccountingImmediateCalculation
if method == 'static_statetransition':
return StaticAccounting
raise ValueError('Unknown accounting method: {}'.format(method))
def get_simulated_accountingmethod(method):
"""Return SimulatedAccountingMethod class for method."""
if method == 'static_state_immediate':
return SimulatedStaticStateOnlyAccountingImmediateCalculation
if method == 'static_statetransition_immediate':
return SimulatedStaticAccountingImmediateCalculation
if method == 'static_state':
return SimulatedStaticStateOnlyAccounting
if method == 'static_statetransition':
return SimulatedStaticAccounting
raise ValueError('Unknown accounting method: {}'.format(method))
class SimulatedAccountingMethod:
"""
Simulates overflows and timing inaccuracies in online energy accounting on embedded devices.
Inaccuracies are based on:
* timer resolution (e.g. a 10kHz timer cannot reliably measure sub-100us timings)
* timer counter size (e.g. a 16-bit timer at 1MHz will overflow after 65us)
* variable size for accounting of durations, power and energy values
"""
def __init__(self, pta: PTA, timer_freq_hz, timer_type, ts_type, power_type, energy_type, ts_granularity = 1e-6, power_granularity = 1e-6, energy_granularity = 1e-12):
"""
Simulate Online Accounting for a given PTA.
:param pta: PTA object
:param timer_freq_hz: Frequency of timer used for state time measurement, in Hz
:param timer_type: Size of timer counter register, as C standard type (uint8_t / uint16_t / uint32_t / uint64_t)
:param ts_type: Size of timestamp variables, as C standard type
:param power_type: Size of power variables, as C standard type
:param energy_type: Size of energy variables, as C standard type
"""
self.pta = pta
self.timer_freq_hz = timer_freq_hz
self.timer_class = simulate_int_type(timer_type)
self.ts_class = simulate_int_type(ts_type)
self.power_class = simulate_int_type(power_type)
self.energy_class = simulate_int_type(energy_type)
self.current_state = pta.state['UNINITIALIZED']
self.ts_granularity = ts_granularity
self.power_granularity = power_granularity
self.energy_granularity = energy_granularity
"""Energy in pJ."""
self.energy = self.energy_class(0)
def _energy_from_power_and_time(self, power, time):
"""
Return energy (=power * time), accounting for configured granularity.
Does not use Module types and therefore does not consider overflows or data-type limitations"""
if self.energy_granularity == self.power_granularity * self.ts_granularity:
return power * time
return int(power * self.power_granularity * time * self.ts_granularity / self.energy_granularity)
def _sleep_duration(self, duration_us):
u"""
Return the sleep duration a timer with the configured timer frequency would measure, according to the configured granularity.
I.e., for a 35us sleep with a 50kHz timer (-> one tick per 20us) and 1us time resolution, the OS would likely measure one tick == 20us.
This is based on the assumption that the timer is reset at each transition, so the duration of states may be under-, but not over-estimated
"""
us_per_tick = 1000000 / self.timer_freq_hz
ticks = self.timer_class(int(duration_us // us_per_tick))
time_units_per_tick = 1 / (self.timer_freq_hz * self.ts_granularity)
return int(ticks.val * time_units_per_tick)
def sleep(self, duration_us):
pass
def pass_transition(self, transition: Transition):
"""Updates current state to `transition.destination`."""
self.current_state = transition.destination
def get_energy(self):
"""Return total energy in pJ."""
return self.energy.val * self.energy_granularity * 1e12
class SimulatedStaticStateOnlyAccountingImmediateCalculation(SimulatedAccountingMethod):
"""
Simulated state-only energy accounting with immediate calculation.
Does not use functions or LUTs, only static (median) state power.
Transitions are assumed to be immediate and have negligible energy overhead.
Keeps track of the current state and the time it is active. On each
transition, current state power and duration is used to update the
total energy spent.
"""
def __init__(self, pta: PTA, *args, **kwargs):
super().__init__(pta, *args, **kwargs)
def sleep(self, duration_us):
time = self._sleep_duration(duration_us)
power = int(self.current_state.power)
energy = self._energy_from_power_and_time(time, power)
self.energy += energy
class SimulatedStaticAccountingImmediateCalculation(SimulatedAccountingMethod):
"""
Simulated energy accounting with states and transitions, immediate calculation.
Does not use functions or LUTs, only static (median) state power and transition energ.
Keeps track of the current state and the time it is active. On each
transition, current state power and duration is used to calculate the
energy spent in the state, which is used in conjunction with the
transition's energy cost to update the total energy spent.
"""
def __init__(self, pta: PTA, *args, **kwargs):
super().__init__(pta, *args, **kwargs)
def sleep(self, duration_us):
time = self._sleep_duration(duration_us)
print('sleep duration is {}'.format(time))
power = int(self.current_state.power)
print('power is {}'.format(power))
energy = self._energy_from_power_and_time(time, power)
print('energy is {}'.format(energy))
self.energy += energy
def pass_transition(self, transition: Transition):
self.energy += int(transition.energy)
super().pass_transition(transition)
class SimulatedStaticAccounting(SimulatedAccountingMethod):
"""
Simulated energy accounting with states and transitions, deferred energy calculation.
Does not use functions or LUTs, only static (median) state power and transition energ.
Keeps track of the time spent in each state and the number of calls for
each transition. This data is update whenever passing a transition and used
to calculate total energy spent on-demand: E = sum(P_q * t_q) + sum(E_t * n_t).
"""
def __init__(self, pta: PTA, *args, **kwargs):
super().__init__(pta, *args, **kwargs)
self.time_in_state = dict()
for state_name in pta.state.keys():
self.time_in_state[state_name] = self.ts_class(0)
self.transition_count = list()
for transition in pta.transitions:
self.transition_count.append(simulate_int_type('uint16_t')(0))
def sleep(self, duration_us):
self.time_in_state[self.current_state.name] += self._sleep_duration(duration_us)
def pass_transition(self, transition: Transition):
self.transition_count[self.pta.transitions.index(transition)] += 1
super().pass_transition(transition)
def get_energy(self):
pta = self.pta
energy = self.energy_class(0)
for state in pta.state.values():
energy += self._energy_from_power_and_time(self.time_in_state[state.name], int(state.power))
for i, transition in enumerate(pta.transitions):
energy += self.transition_count[i] * int(transition.energy)
return energy.val
class SimulatedStaticStateOnlyAccounting(SimulatedAccountingMethod):
"""
Simulated energy accounting with states and transitions, deferred energy calculation.
Does not use functions or LUTs, only static (median) state power and transition energ.
Keeps track of the time spent in each state and the number of calls for
each transition. This data is update whenever passing a transition and used
to calculate total energy spent on-demand: E = sum(P_q * t_q) + sum(E_t * n_t).
"""
def __init__(self, pta: PTA, *args, **kwargs):
super().__init__(pta, *args, **kwargs)
self.time_in_state = dict()
for state_name in pta.state.keys():
self.time_in_state[state_name] = self.ts_class(0)
def sleep(self, duration_us):
self.time_in_state[self.current_state.name] += self._sleep_duration(duration_us)
def get_energy(self):
pta = self.pta
energy = self.energy_class(0)
for state in pta.state.values():
energy += self._energy_from_power_and_time(self.time_in_state[state.name], int(state.power))
return energy.val
class AccountingMethod:
def __init__(self, class_name: str, pta: PTA):
self.class_name = class_name
self.pta = pta
self.include_paths = list()
self.private_variables = list()
self.public_variables = list()
self.private_functions = list()
self.public_functions = list()
def pre_transition_hook(self, transition):
return ''
def init_code(self):
return ''
def get_includes(self):
return map(lambda x: '#include "{}"'.format(x), self.include_paths)
class StaticStateOnlyAccountingImmediateCalculation(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append('{} totalEnergy;'.format(energy_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
get_energy_function = """return totalEnergy;"""
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
totalEnergy += (now - lastStateChange) * state_power[lastState];
lastStateChange = now;
lastState = {};
""".format(self.pta.get_state_id(transition.destination))
def init_code(self):
return """
totalEnergy = 0;
lastStateChange = 0;
lastState = 0;
""".format(num_states = len(self.pta.state))
class StaticStateOnlyAccounting(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
self.private_variables.append('{} timeInState[{}];'.format(ts_type, len(pta.state)))
get_energy_function = """
{energy_type} total_energy = 0;
for (int i = 0; i < {num_states}; i++) {{
total_energy += timeInState[i] * state_power[i];
}}
return total_energy;
""".format(energy_type = energy_type, num_states = len(pta.state))
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
timeInState[lastState] += now - lastStateChange;
lastStateChange = now;
lastState = {};
""".format(self.pta.get_state_id(transition.destination))
def init_code(self):
return """
for (unsigned char i = 0; i < {num_states}; i++) {{
timeInState[i] = 0;
}}
lastState = 0;
lastStateChange = 0;
""".format(num_states = len(self.pta.state))
class StaticAccounting(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
self.private_variables.append(array_template.format(
type = energy_type,
name = 'transition_energy',
length = len(pta.get_unique_transitions()),
elements = ', '.join(map(lambda transition: '{:.0f}'.format(transition.energy), pta.get_unique_transitions()))
))
self.private_variables.append('{} timeInState[{}];'.format(ts_type, len(pta.state)))
self.private_variables.append('{} transitionCount[{}];'.format('unsigned int', len(pta.get_unique_transitions())))
get_energy_function = """
{energy_type} total_energy = 0;
for (unsigned char i = 0; i < {num_states}; i++) {{
total_energy += timeInState[i] * state_power[i];
}}
for (unsigned char i = 0; i < {num_transitions}; i++) {{
total_energy += transitionCount[i] * transition_energy[i];
}}
return total_energy;
""".format(energy_type = energy_type, num_states = len(pta.state), num_transitions = len(pta.get_unique_transitions()))
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
timeInState[lastState] += now - lastStateChange;
transitionCount[{}]++;
lastStateChange = now;
lastState = {};
""".format(self.pta.get_unique_transition_id(transition), self.pta.get_state_id(transition.destination))
def init_code(self):
return """
for (unsigned char i = 0; i < {num_states}; i++) {{
timeInState[i] = 0;
}}
for (unsigned char i = 0; i < {num_transitions}; i++) {{
transitionCount[i] = 0;
}}
lastState = 0;
lastStateChange = 0;
""".format(num_states = len(self.pta.state), num_transitions = len(self.pta.get_unique_transitions()))
class StaticAccountingImmediateCalculation(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append('{} totalEnergy;'.format(energy_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
get_energy_function = """
return totalEnergy;
""".format(energy_type = energy_type, num_states = len(pta.state), num_transitions = len(pta.get_unique_transitions()))
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
totalEnergy += (now - lastStateChange) * state_power[lastState];
totalEnergy += {};
lastStateChange = now;
lastState = {};
""".format(transition.energy, self.pta.get_state_id(transition.destination))
def init_code(self):
return """
lastState = 0;
lastStateChange = 0;
""".format(num_states = len(self.pta.state), num_transitions = len(self.pta.get_unique_transitions()))
class MultipassDriver:
"""Generate C++ header and no-op implementation for a multipass driver based on a DFA model."""
def __init__(self, name, pta, class_info, enum = dict(), accounting = AccountingMethod):
self.impl = ''
self.header = ''
self.name = name
self.pta = pta
self.class_info = class_info
self.enum = enum
includes = list()
private_functions = list()
public_functions = list()
private_variables = list()
public_variables = list()
public_functions.append(ClassFunction(self.name, '', self.name, list(), accounting.init_code()))
for transition in self.pta.get_unique_transitions():
# XXX right now we only verify whether both functions have the
# same number of arguments. This breaks in many overloading cases.
function_info = self.class_info.function[transition.name]
for function_candidate in self.class_info.functions:
if function_candidate.name == transition.name and len(function_candidate.argument_types) == len(transition.arguments):
function_info = function_candidate
function_arguments = list()
for i in range(len(transition.arguments)):
function_arguments.append('{} {}'.format(function_info.argument_types[i], transition.arguments[i]))
function_definition = '{} {}({})'.format(function_info.return_type, transition.name, ', '.join(function_arguments))
function_head = '{} {}::{}({})'.format(function_info.return_type, self.name, transition.name, ', '.join(function_arguments))
function_body = accounting.pre_transition_hook(transition)
if function_info.return_type != 'void':
function_body += 'return 0;\n'
public_functions.append(ClassFunction(self.name, function_info.return_type, transition.name, function_arguments, function_body))
enums = list()
for enum_name in self.enum.keys():
enums.append('enum {} {{ {} }};'.format(enum_name, ', '.join(self.enum[enum_name])))
if accounting:
includes.extend(accounting.get_includes())
private_functions.extend(accounting.private_functions)
public_functions.extend(accounting.public_functions)
private_variables.extend(accounting.private_variables)
public_variables.extend(accounting.public_variables)
self.header = header_template.format(
name = self.name, name_lower = self.name.lower(),
includes = '\n'.join(includes),
private_variables = '\n'.join(private_variables),
public_variables = '\n'.join(public_variables),
public_functions = '\n'.join(map(lambda x: x.get_definition(), public_functions)),
private_functions = '',
enums = '\n'.join(enums))
self.impl = implementation_template.format(name = self.name, name_lower = self.name.lower(), functions = '\n\n'.join(map(lambda x: x.get_implementation(), public_functions)))
|