1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
"""Code generators for multipass dummy drivers for online model evaluation."""
from automata import PTA
header_template = """
#ifndef DFATOOL_{name}_H
#define DFATOOL_{name}_H
{includes}
class {name}
{{
private:
{name}(const {name} ©);
{private_variables}
{private_functions}
public:
{enums}
{public_variables}
{public_functions}
}};
extern {name} {name_lower};
#endif
"""
implementation_template = """
#include "driver/dummy.h"
{functions}
{name} {name_lower};
"""
array_template = """
{type} const {name}[{length}] = {{{elements}}};
"""
class ClassFunction:
def __init__(self, class_name, return_type, name, arguments, body):
"""
Create a new C++ class method wrapper.
:param class_name: Class name
:param return_type: function return type
:param name: function name
:param arguments: list of arguments (must contain type and name)
:param body: function body (str)
"""
self.class_name = class_name
self.return_type = return_type
self.name = name
self.arguments = arguments
self.body = body
def get_definition(self):
return '{} {}({});'.format(self.return_type, self.name, ', '.join(self.arguments))
def get_implementation(self):
if self.body is None:
return ''
return '{} {}::{}({}) {{\n{}}}\n'.format(self.return_type, self.class_name, self.name, ', '.join(self.arguments), self.body)
class AccountingMethod:
def __init__(self, class_name: str, pta: PTA, ):
self.class_name = class_name
self.pta = pta
self.include_paths = list()
self.private_variables = list()
self.public_variables = list()
self.private_functions = list()
self.public_functions = list()
def pre_transition_hook(self, transition):
return ''
def init_code(self):
return ''
def get_includes(self):
return map(lambda x: '#include "{}"'.format(x), self.include_paths)
class StaticStateOnlyAccountingImmediateCalculation(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append('{} totalEnergy;'.format(energy_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
get_energy_function = """return totalEnergy;"""
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
totalEnergy += (now - lastStateChange) * state_power[lastState];
lastStateChange = now;
lastState = {};
""".format(self.pta.get_state_id(transition.destination))
def init_code(self):
return """
totalEnergy = 0;
lastStateChange = 0;
lastState = 0;
""".format(num_states = len(self.pta.state))
class StaticStateOnlyAccounting(AccountingMethod):
def __init__(self, class_name: str, pta: PTA, ts_type = 'unsigned int', power_type = 'unsigned int', energy_type = 'unsigned long'):
super().__init__(class_name, pta)
self.ts_type = ts_type
self.include_paths.append('driver/uptime.h')
self.private_variables.append('unsigned char lastState;')
self.private_variables.append('{} lastStateChange;'.format(ts_type))
self.private_variables.append(array_template.format(
type = power_type,
name = 'state_power',
length = len(pta.state),
elements = ', '.join(map(lambda state_name: '{:.0f}'.format(pta.state[state_name].power), pta.get_state_names()))
))
self.private_variables.append('{} timeInState[{}];'.format(ts_type, len(pta.state)))
get_energy_function = """
{energy_type} total_energy = 0;
for (int i = 0; i < {num_states}; i++) {{
total_energy += timeInState[i] * state_power[i];
}}
return total_energy;
""".format(energy_type = energy_type, num_states = len(pta.state))
self.public_functions.append(ClassFunction(class_name, energy_type, 'getEnergy', list(), get_energy_function))
def pre_transition_hook(self, transition):
return """
unsigned int now = uptime.get_us();
timeInState[lastState] += now - lastStateChange;
lastStateChange = now;
lastState = {};
""".format(self.pta.get_state_id(transition.destination))
def init_code(self):
return """
for (unsigned char i = 0; i < {num_states}; i++) {{
timeInState[i] = 0;
}}
lastState = 0;
lastStateChange = 0;
""".format(num_states = len(self.pta.state))
class MultipassDriver:
"""Generate C++ header and no-op implementation for a multipass driver based on a DFA model."""
def __init__(self, name, pta, class_info, enum = dict(), accounting = AccountingMethod):
self.impl = ''
self.header = ''
self.name = name
self.pta = pta
self.class_info = class_info
self.enum = enum
includes = list()
private_functions = list()
public_functions = list()
private_variables = list()
public_variables = list()
public_functions.append(ClassFunction(self.name, '', self.name, list(), accounting.init_code()))
seen_transitions = set()
for transition in self.pta.transitions:
if transition.name in seen_transitions:
continue
seen_transitions.add(transition.name)
# XXX right now we only verify whether both functions have the
# same number of arguments. This breaks in many overloading cases.
function_info = self.class_info.function[transition.name]
for function_candidate in self.class_info.functions:
if function_candidate.name == transition.name and len(function_candidate.argument_types) == len(transition.arguments):
function_info = function_candidate
function_arguments = list()
for i in range(len(transition.arguments)):
function_arguments.append('{} {}'.format(function_info.argument_types[i], transition.arguments[i]))
function_definition = '{} {}({})'.format(function_info.return_type, transition.name, ', '.join(function_arguments))
function_head = '{} {}::{}({})'.format(function_info.return_type, self.name, transition.name, ', '.join(function_arguments))
function_body = accounting.pre_transition_hook(transition)
if function_info.return_type != 'void':
function_body += 'return 0;\n'
public_functions.append(ClassFunction(self.name, function_info.return_type, transition.name, function_arguments, function_body))
enums = list()
for enum_name in self.enum.keys():
enums.append('enum {} {{ {} }};'.format(enum_name, ', '.join(self.enum[enum_name])))
if accounting:
includes.extend(accounting.get_includes())
private_functions.extend(accounting.private_functions)
public_functions.extend(accounting.public_functions)
private_variables.extend(accounting.private_variables)
public_variables.extend(accounting.public_variables)
self.header = header_template.format(
name = self.name, name_lower = self.name.lower(),
includes = '\n'.join(includes),
private_variables = '\n'.join(private_variables),
public_variables = '\n'.join(public_variables),
public_functions = '\n'.join(map(lambda x: x.get_definition(), public_functions)),
private_functions = '',
enums = '\n'.join(enums))
self.impl = implementation_template.format(name = self.name, name_lower = self.name.lower(), functions = '\n\n'.join(map(lambda x: x.get_implementation(), public_functions)))
|