1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
|
#!/usr/bin/env python3
import csv
from itertools import chain, combinations
import json
import numpy as np
import os
from scipy.cluster.vq import kmeans2
import struct
import sys
import tarfile
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def is_numeric(n):
if n == None:
return False
try:
int(n)
return True
except ValueError:
return False
def append_if_set(aggregate, data, key):
if key in data:
aggregate.append(data[key])
def mean_or_none(arr):
if len(arr):
return np.mean(arr)
return -1
def aggregate_measures(aggregate, actual):
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted, actual):
deviations = predicted - actual
if len(deviations) == 0:
return {}
measures = {
'mae' : np.mean(np.abs(deviations), dtype=np.float64),
'msd' : np.mean(deviations**2, dtype=np.float64),
'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64),
'ssr' : np.sum(deviations**2, dtype=np.float64),
}
if np.all(actual != 0):
measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure
if np.all(np.abs(predicted) + np.abs(actual) != 0):
measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100
return measures
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
class Keysight:
def __init__(self):
pass
def load_data(self, filename):
with open(filename) as f:
for i, l in enumerate(f):
pass
timestamps = np.ndarray((i-3), dtype=float)
currents = np.ndarray((i-3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=',')
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
class MIMOSA:
def __init__(self, voltage, shunt):
self.voltage = voltage
self.shunt = shunt
self.r1 = 984 # "1k"
self.r2 = 99013 # "100k"
def charge_to_current_nocal(self, charge):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charge * ua_step
def load_data(self, filename):
with tarfile.open(filename) as tf:
num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
content = f.read()
iterator = struct.iter_unpack('<I', content)
i = 0
for word in iterator:
charges[i] = (word[0] >> 4)
triggers[i] = (word[0] & 0x08) >> 3
i += 1
return (charges, triggers)
def currents_nocal(self, charges):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charges.astype(np.double) * ua_step
def trigger_edges(self, triggers):
trigidx = []
prevtrig = triggers[0]
# the device is reset for MIMOSA calibration in the first 10s and may
# send bogus interrupts -> bogus triggers
for i in range(1000000, triggers.shape[0]):
trig = triggers[i]
if trig != prevtrig:
# Due to MIMOSA's integrate-read-reset cycle, the trigger
# appears two points (20µs) before the corresponding data
trigidx.append(i+2)
prevtrig = trig
return trigidx
def calibration_edges(self, currents):
r1idx = 0
r2idx = 0
ua_r1 = self.voltage / self.r1 * 1000000
# first second may be bogus
for i in range(100000, len(currents)):
if r1idx == 0 and currents[i] > ua_r1 * 0.6:
r1idx = i
elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4:
r2idx = i
# 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
# allow 5ms buffer in both directions to account for bouncing relais contacts
return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500
def calibration_function(self, charges, cal_edges):
dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
if dis_start < 0:
dis_start = 0
chg_r0 = charges[dis_start:dis_end]
chg_r1 = charges[r1_start:r1_end]
chg_r2 = charges[r2_start:r2_end]
cal_0_mean = np.mean(chg_r0)
cal_0_std = np.std(chg_r0)
cal_r1_mean = np.mean(chg_r1)
cal_r1_std = np.std(chg_r1)
cal_r2_mean = np.mean(chg_r2)
cal_r2_std = np.std(chg_r2)
ua_r1 = self.voltage / self.r1 * 1000000
ua_r2 = self.voltage / self.r2 * 1000000
if cal_r2_mean > cal_0_mean:
b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
else:
print("WARNING: 0 uA == %.f uA during calibration" % (ua_r2))
b_lower = 0
b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean)
a_lower = -b_lower * cal_0_mean
a_upper = -b_upper * cal_r2_mean
a_total = -b_total * cal_0_mean
if self.shunt == 680:
# R1 current is higher than shunt range -> only use R2 for calibration
def calfunc(charge):
if charge < cal_0_mean:
return 0
else:
return charge * b_lower + a_lower
else:
def calfunc(charge):
if charge < cal_0_mean:
return 0
if charge <= cal_r2_mean:
return charge * b_lower + a_lower
else:
return charge * b_upper + a_upper + ua_r2
caldata = {
'edges' : [x * 10 for x in cal_edges],
'offset': cal_0_mean,
'offset2' : cal_r2_mean,
'slope_low' : b_lower,
'slope_high' : b_upper,
'add_low' : a_lower,
'add_high' : a_upper,
'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage,
'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage,
'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage,
'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage,
}
#print("if charge < %f : return 0" % cal_0_mean)
#print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
#print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
return calfunc, caldata
def calcgrad(self, currents, threshold):
grad = np.gradient(running_mean(currents * self.voltage, 10))
# len(grad) == len(currents) - 9
subst = []
lastgrad = 0
for i in range(len(grad)):
# minimum substate duration: 10ms
if np.abs(grad[i]) > threshold and i - lastgrad > 50:
# account for skew introduced by running_mean and current
# ramp slope (parasitic capacitors etc.)
subst.append(i+10)
lastgrad = i
if lastgrad != i:
subst.append(i+10)
return subst
# TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
# Sache nach noetiger threshold. postprocessing mit
# "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
# ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
# TODO bei substates / index foo den offset durch running_mean beachten
# TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
# uebergaenge dadurch?
def gradfoo(self, currents):
gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
gradmin = np.min(gradients)
gradmax = np.max(gradients)
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
num_substates = 2
while len(gradidx) != num_substates:
if gradmax - gradmin < 0.1:
# We did our best
return threshold, gradidx
if len(gradidx) > num_substates:
gradmin = threshold
else:
gradmax = threshold
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
return threshold, gradidx
def analyze_states(self, charges, trigidx, ua_func):
previdx = 0
is_state = True
iterdata = []
for idx in trigidx:
range_raw = charges[previdx:idx]
range_ua = ua_func(range_raw)
substates = {}
if previdx != 0 and idx - previdx > 200:
thr, subst = 0, [] #self.gradfoo(range_ua)
if len(subst):
statelist = []
prevsubidx = 0
for subidx in subst:
statelist.append({
'duration': (subidx - prevsubidx) * 10,
'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage),
'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage),
})
prevsubidx = subidx
substates = {
'threshold' : thr,
'states' : statelist,
}
isa = 'state'
if not is_state:
isa = 'transition'
data = {
'isa': isa,
'clip_rate' : np.mean(range_raw == 65535),
'raw_mean': np.mean(range_raw),
'raw_std' : np.std(range_raw),
'uW_mean' : np.mean(range_ua * self.voltage),
'uW_std' : np.std(range_ua * self.voltage),
'us' : (idx - previdx) * 10,
}
if 'states' in substates:
data['substates'] = substates
ssum = np.sum(list(map(lambda x : x['duration'], substates['states'])))
if ssum != data['us']:
print("ERR: duration %d vs %d" % (data['us'], ssum))
if isa == 'transition':
# subtract average power of previous state
# (that is, the state from which this transition originates)
data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
# placeholder to avoid extra cases in the analysis
data['uW_mean_delta_next'] = data['uW_mean']
data['timeout'] = iterdata[-1]['us']
elif len(iterdata) > 0:
# subtract average power of next state
# (the state into which this transition leads)
iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']
iterdata.append(data)
previdx = idx
is_state = not is_state
return iterdata
|