1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
|
#!/usr/bin/env python3
import csv
import io
import json
import numpy as np
import os
import re
from scipy import optimize
from sklearn.metrics import r2_score
import struct
import sys
import tarfile
from multiprocessing import Pool
from automata import PTA
from functions import analytic
from functions import AnalyticFunction
from utils import vprint, is_numeric, soft_cast_int, param_slice_eq, compute_param_statistics, remove_index_from_tuple
arg_support_enabled = True
def running_mean(x: np.ndarray, N: int) -> np.ndarray:
"""
Compute `N` elements wide running average over `x`.
:param x: 1-Dimensional NumPy array
:param N: how many items to average
"""
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def gplearn_to_function(function_str: str):
"""
Convert gplearn-style function string to Python function.
Takes a function string like "mul(add(X0, X1), X2)" and returns
a Python function implementing the specified behaviour,
e.g. "lambda x, y, z: (x + y) * z".
Supported functions:
add -- x + y
sub -- x - y
mul -- x * y
div -- x / y if |y| > 0.001, otherwise 1
sqrt -- sqrt(|x|)
log -- log(|x|) if |x| > 0.001, otherwise 0
inv -- 1 / x if |x| > 0.001, otherwise 0
"""
eval_globals = {
'add' : lambda x, y : x + y,
'sub' : lambda x, y : x - y,
'mul' : lambda x, y : x * y,
'div' : lambda x, y : np.divide(x, y) if np.abs(y) > 0.001 else 1.,
'sqrt': lambda x : np.sqrt(np.abs(x)),
'log' : lambda x : np.log(np.abs(x)) if np.abs(x) > 0.001 else 0.,
'inv' : lambda x : 1. / x if np.abs(x) > 0.001 else 0.,
}
last_arg_index = 0
for i in range(0, 100):
if function_str.find('X{:d}'.format(i)) >= 0:
last_arg_index = i
arg_list = []
for i in range(0, last_arg_index+1):
arg_list.append('X{:d}'.format(i))
eval_str = 'lambda {}, *whatever: {}'.format(','.join(arg_list), function_str)
print(eval_str)
return eval(eval_str, eval_globals)
def append_if_set(aggregate: dict, data: dict, key: str):
"""Append data[key] to aggregate if key in data."""
if key in data:
aggregate.append(data[key])
def mean_or_none(arr):
"""
Compute mean of NumPy array `arr`, return -1 if empty.
:param arr: 1-Dimensional NumPy array
"""
if len(arr):
return np.mean(arr)
return -1
def aggregate_measures(aggregate: float, actual: list) -> dict:
"""
Calculate error measures for model value on data list.
arguments:
aggregate -- model value (float or int)
actual -- real-world / reference values (list of float or int)
return value:
See regression_measures
"""
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted: np.ndarray, actual: np.ndarray):
"""
Calculate error measures by comparing model values to reference values.
arguments:
predicted -- model values (np.ndarray)
actual -- real-world / reference values (np.ndarray)
Returns a dict containing the following measures:
mae -- Mean Absolute Error
mape -- Mean Absolute Percentage Error,
if all items in actual are non-zero (NaN otherwise)
smape -- Symmetric Mean Absolute Percentage Error,
if no 0,0-pairs are present in actual and predicted (NaN otherwise)
msd -- Mean Square Deviation
rmsd -- Root Mean Square Deviation
ssr -- Sum of Squared Residuals
rsq -- R^2 measure, see sklearn.metrics.r2_score
count -- Number of values
"""
if type(predicted) != np.ndarray:
raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
if type(actual) != np.ndarray:
raise ValueError('second arg must be ndarray, is {}'.format(type(actual)))
deviations = predicted - actual
#mean = np.mean(actual)
if len(deviations) == 0:
return {}
measures = {
'mae' : np.mean(np.abs(deviations), dtype=np.float64),
'msd' : np.mean(deviations**2, dtype=np.float64),
'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64),
'ssr' : np.sum(deviations**2, dtype=np.float64),
'rsq' : r2_score(actual, predicted),
'count' : len(actual),
}
#rsq_quotient = np.sum((actual - mean)**2, dtype=np.float64) * np.sum((predicted - mean)**2, dtype=np.float64)
if np.all(actual != 0):
measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure
else:
measures['mape'] = np.nan
if np.all(np.abs(predicted) + np.abs(actual) != 0):
measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100
else:
measures['smape'] = np.nan
#if np.all(rsq_quotient != 0):
# measures['rsq'] = (np.sum((actual - mean) * (predicted - mean), dtype=np.float64)**2) / rsq_quotient
return measures
class KeysightCSV:
"""Simple loader for Keysight CSV data, as exported by the windows software."""
def __init__(self):
"""Create a new KeysightCSV object."""
pass
def load_data(self, filename: str):
"""
Load log data from filename, return timestamps and currents.
Returns two one-dimensional NumPy arrays: timestamps and corresponding currents.
"""
with open(filename) as f:
for i, _ in enumerate(f):
pass
timestamps = np.ndarray((i-3), dtype=float)
currents = np.ndarray((i-3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=',')
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
def by_name_to_by_param(by_name: dict):
"""
Convert aggregation by name to aggregation by name and parameter values.
"""
by_param = dict()
for name in by_name.keys():
for i, parameters in enumerate(by_name[name]['param']):
param_key = (name, tuple(parameters))
if param_key not in by_param:
by_param[param_key] = dict()
for key in by_name[name].keys():
by_param[param_key][key] = list()
by_param[param_key]['attributes'] = by_name[name]['attributes']
# special case for PTA models
if 'isa' in by_name[name]:
by_param[param_key]['isa'] = by_name[name]['isa']
for attribute in by_name[name]['attributes']:
by_param[param_key][attribute].append(by_name[name][attribute][i])
return by_param
def _xv_partitions_kfold(length, num_slices):
pairs = []
indexes = np.arange(length)
for i in range(0, num_slices):
training = np.delete(indexes, slice(i, None, num_slices))
validation = indexes[i::num_slices]
pairs.append((training, validation))
return pairs
def _xv_partition_montecarlo(length):
shuffled = np.random.permutation(np.arange(length))
border = int(length * float(2) / 3)
training = shuffled[:border]
validation = shuffled[border:]
return (training, validation)
class CrossValidator:
"""
Cross-Validation helper for model generation.
Given a set of measurements and a model class, it will partition the
data into training and validation sets, train the model on the training
set, and assess its quality on the validation set. This is repeated
several times depending on cross-validation algorithm and configuration.
Reports the mean model error over all cross-validation runs.
"""
def __init__(self, model_class, by_name, parameters, arg_count):
"""
Create a new CrossValidator object.
Does not perform cross-validation yet.
arguments:
model_class -- model class/type used for model synthesis,
e.g. PTAModel or AnalyticModel. model_class must have a
constructor accepting (by_name, parameters, arg_count, verbose = False)
and provide an assess method.
by_name -- measurements aggregated by state/transition/function/... name.
Layout: by_name[name][attribute] = list of data. Additionally,
by_name[name]['attributes'] must be set to the list of attributes,
e.g. ['power'] or ['duration', 'energy'].
"""
self.model_class = model_class
self.by_name = by_name
self.names = sorted(by_name.keys())
self.parameters = sorted(parameters)
self.arg_count = arg_count
def montecarlo(self, model_getter, count = 200):
"""
Perform Monte Carlo cross-validation and return average model quality.
The by_name data is randomly divided into 2/3 training and 1/3
validation. After creating a model for the training set, the
model type returned by model_getter is evaluated on the validation set.
This is repeated count times (defaulting to 200); the average of all
measures is returned to the user.
arguments:
model_getter -- function with signature (model_object) -> model,
e.g. lambda m: m.get_fitted()[0] to evaluate the parameter-aware
model with automatic parameter detection.
count -- number of validation runs to perform, defaults to 200
return value:
dict of model quality measures.
{
'by_name' : {
for each name: {
for each attribute: {
'mae' : mean of all mean absolute errors
'mae_list' : list of the individual MAE values encountered during cross-validation
'smape' : mean of all symmetric mean absolute percentage errors
'smape_list' : list of the individual SMAPE values encountered during cross-validation
}
}
}
}
"""
ret = {
'by_name' : dict()
}
for name in self.names:
ret['by_name'][name] = dict()
for attribute in self.by_name[name]['attributes']:
ret['by_name'][name][attribute] = {
'mae_list': list(),
'smape_list': list()
}
for _ in range(count):
res = self._single_montecarlo(model_getter)
for name in self.names:
for attribute in self.by_name[name]['attributes']:
ret['by_name'][name][attribute]['mae_list'].append(res['by_name'][name][attribute]['mae'])
ret['by_name'][name][attribute]['smape_list'].append(res['by_name'][name][attribute]['smape'])
for name in self.names:
for attribute in self.by_name[name]['attributes']:
ret['by_name'][name][attribute]['mae'] = np.mean(ret['by_name'][name][attribute]['mae_list'])
ret['by_name'][name][attribute]['smape'] = np.mean(ret['by_name'][name][attribute]['smape_list'])
return ret
def _single_montecarlo(self, model_getter):
training = dict()
validation = dict()
for name in self.names:
training[name] = {
'attributes' : self.by_name[name]['attributes']
}
validation[name] = {
'attributes' : self.by_name[name]['attributes']
}
if 'isa' in self.by_name[name]:
training[name]['isa'] = self.by_name[name]['isa']
validation[name]['isa'] = self.by_name[name]['isa']
data_count = len(self.by_name[name]['param'])
training_subset, validation_subset = _xv_partition_montecarlo(data_count)
for attribute in self.by_name[name]['attributes']:
self.by_name[name][attribute] = np.array(self.by_name[name][attribute])
training[name][attribute] = self.by_name[name][attribute][training_subset]
validation[name][attribute] = self.by_name[name][attribute][validation_subset]
# We can't use slice syntax for 'param', which may contain strings and other odd values
training[name]['param'] = list()
validation[name]['param'] = list()
for idx in training_subset:
training[name]['param'].append(self.by_name[name]['param'][idx])
for idx in validation_subset:
validation[name]['param'].append(self.by_name[name]['param'][idx])
training_data = self.model_class(training, self.parameters, self.arg_count, verbose = False)
training_model = model_getter(training_data)
validation_data = self.model_class(validation, self.parameters, self.arg_count, verbose = False)
return validation_data.assess(training_model)
def _preprocess_measurement(measurement):
setup = measurement['setup']
mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt']))
charges, triggers = mim.load_data(measurement['content'])
trigidx = mim.trigger_edges(triggers)
triggers = []
cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
calfunc, caldata = mim.calibration_function(charges, cal_edges)
vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
processed_data = {
'fileno' : measurement['fileno'],
'info' : measurement['info'],
'triggers' : len(trigidx),
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc),
'has_mimosa_error' : mim.is_error,
'mimosa_errors' : mim.errors,
}
if 'expected_trace' in measurement:
processed_data['expected_trace'] = measurement['expected_trace']
return processed_data
class ParamStats:
def __init__(self, by_name, by_param, parameter_names, arg_count, use_corrcoef = False, verbose = False):
"""
Compute standard deviation and correlation coefficient on parameterized data partitions.
It is strongly recommended to vary all parameter values evenly.
For instance, given two parameters, providing only the combinations
(1, 1), (5, 1), (7, 1,) (10, 1), (1, 2), (1, 6) will lead to bogus results.
It is better to provide (1, 1), (5, 1), (1, 2), (5, 2), ... (i.e. a cross product of all individual parameter values)
arguments:
by_name -- ground truth partitioned by state/transition name.
by_name[state_or_trans][attribute] must be a list or 1-D numpy array.
by_name[state_or_trans]['param'] must be a list of parameter values
corresponding to the ground truth, e.g. [[1, 2, 3], ...] if the
first ground truth element has the (lexically) first parameter set to 1,
the second to 2 and the third to 3.
by_param -- ground truth partitioned by state/transition name and parameters.
by_name[(state_or_trans, *)][attribute] must be a list or 1-D numpy array.
parameter_names -- list of parameter names, must have the same order as the parameter
values in by_param (lexical sorting is recommended).
arg_count -- dict providing the number of functions args ("local parameters") for each function.
use_corrcoef -- use correlation coefficient instead of stddev heuristic for parameter detection
"""
self.stats = dict()
self.use_corrcoef = use_corrcoef
self._parameter_names = parameter_names
# Note: This is deliberately single-threaded. The overhead incurred
# by multiprocessing is higher than the speed gained by parallel
# computation of statistics measures.
for state_or_tran in by_name.keys():
self.stats[state_or_tran] = dict()
for attribute in by_name[state_or_tran]['attributes']:
self.stats[state_or_tran][attribute] = compute_param_statistics(by_name, by_param, parameter_names, arg_count, state_or_tran, attribute, verbose = verbose)
def _generic_param_independence_ratio(self, state_or_trans, attribute):
"""
Return the heuristic ratio of parameter independence for state_or_trans and attribute.
This is not supported if the correlation coefficient is used.
A value close to 1 means no influence, a value close to 0 means high probability of influence.
"""
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
# not supported
raise ValueError
if statistics['std_static'] == 0:
return 0
return statistics['std_param_lut'] / statistics['std_static']
def generic_param_dependence_ratio(self, state_or_trans, attribute):
"""
Return the heuristic ratio of parameter dependence for state_or_trans and attribute.
This is not supported if the correlation coefficient is used.
A value close to 0 means no influence, a value close to 1 means high probability of influence.
"""
return 1 - self._generic_param_independence_ratio(state_or_trans, attribute)
def _param_independence_ratio(self, state_or_trans, attribute, param):
"""
Return the heuristic ratio of parameter independence for state_or_trans, attribute, and param.
A value close to 1 means no influence, a value close to 0 means high probability of influence.
"""
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
return 1 - np.abs(statistics['corr_by_param'][param])
if statistics['std_by_param'][param] == 0:
if statistics['std_param_lut'] != 0:
raise RuntimeError("wat")
# In general, std_param_lut < std_by_param. So, if std_by_param == 0, std_param_lut == 0 follows.
# This means that the variation of param does not affect the model quality -> no influence, return 1
return 1.
safe_div = np.vectorize(lambda x,y: 1. if x == 0 else x/y)
std_by_value = safe_div(statistics['lut_by_param_values'][param], statistics['std_by_param_values'][param])
i = 0
for other_param in self._parameter_names:
if param != other_param and not np.any(np.isnan(std_by_value)) and std_by_value.shape[i] > 1:
dep1 = np.all(std_by_value < 0.5, axis=i)
dep2 = np.all(std_by_value >= 0.5, axis=i)
if np.any(dep1 | dep2 == False):
print('possible correlation {}/{} {} <-> {}'.format(state_or_trans, attribute, param, other_param))
i += 1
return statistics['std_param_lut'] / statistics['std_by_param'][param]
def param_dependence_ratio(self, state_or_trans, attribute, param):
"""
Return the heuristic ratio of parameter dependence for state_or_trans, attribute, and param.
A value close to 0 means no influence, a value close to 1 means high probability of influence.
"""
return 1 - self._param_independence_ratio(state_or_trans, attribute, param)
def _arg_independence_ratio(self, state_or_trans, attribute, arg_index):
statistics = self.stats[state_or_trans][attribute]
if self.use_corrcoef:
return 1 - np.abs(statistics['corr_by_arg'][arg_index])
if statistics['std_by_arg'][arg_index] == 0:
if statistics['std_param_lut'] != 0:
raise RuntimeError("wat")
# In general, std_param_lut < std_by_arg. So, if std_by_arg == 0, std_param_lut == 0 follows.
# This means that the variation of arg does not affect the model quality -> no influence, return 1
return 1
return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index]
def arg_dependence_ratio(self, state_or_trans, attribute, arg_index):
return 1 - self._arg_independence_ratio(state_or_trans, attribute, arg_index)
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
# --df, 2018-04-18
def depends_on_param(self, state_or_trans, attribute, param):
"""Return whether attribute of state_or_trans depens on param."""
if self.use_corrcoef:
return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.1
else:
return self.param_dependence_ratio(state_or_trans, attribute, param) > 0.5
# See notes on depends_on_param
def depends_on_arg(self, state_or_trans, attribute, arg_index):
"""Return whether attribute of state_or_trans depens on arg_index."""
if self.use_corrcoef:
return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.1
else:
return self.arg_dependence_ratio(state_or_trans, attribute, arg_index) > 0.5
class TimingData:
"""
Loader for timing model traces measured with on-board timers using `harness.OnboardTimerHarness`.
Excpets a specific trace format and UART log output (as produced by
generate-dfa-benchmark.py). Prunes states from output. (TODO)
"""
def __init__(self, filenames):
"""
Create a new TimingData object.
Each filenames element corresponds to a measurement run.
"""
self.filenames = filenames.copy()
self.traces_by_fileno = []
self.setup_by_fileno = []
self.preprocessed = False
self._parameter_names = None
self.version = 0
def _concatenate_analyzed_traces(self):
self.traces = []
for trace_group in self.traces_by_fileno:
for trace in trace_group:
# TimingHarness logs states, but does not aggregate any data for them at the moment -> throw all states away
transitions = list(filter(lambda x: x['isa'] == 'transition', trace['trace']))
self.traces.append({
'id' : trace['id'],
'trace': transitions,
})
for i, trace in enumerate(self.traces):
trace['orig_id'] = trace['id']
trace['id'] = i
for log_entry in trace['trace']:
paramkeys = sorted(log_entry['parameter'].keys())
if not 'param' in log_entry['offline_aggregates']:
log_entry['offline_aggregates']['param'] = list()
if 'duration' in log_entry['offline_aggregates']:
for i in range(len(log_entry['offline_aggregates']['duration'])):
paramvalues = list()
for paramkey in paramkeys:
if type(log_entry['parameter'][paramkey]) is list:
paramvalues.append(soft_cast_int(log_entry['parameter'][paramkey][i]))
else:
paramvalues.append(soft_cast_int(log_entry['parameter'][paramkey]))
if arg_support_enabled and 'args' in log_entry:
paramvalues.extend(map(soft_cast_int, log_entry['args']))
log_entry['offline_aggregates']['param'].append(paramvalues)
def _preprocess_0(self):
for filename in self.filenames:
with open(filename, 'r') as f:
log_data = json.load(f)
self.traces_by_fileno.extend(log_data['traces'])
self._concatenate_analyzed_traces()
def get_preprocessed_data(self, verbose = True):
"""
Return a list of DFA traces annotated with timing and parameter data.
Suitable for the PTAModel constructor.
See PTAModel(...) docstring for format details.
"""
self.verbose = verbose
if self.preprocessed:
return self.traces
if self.version == 0:
self._preprocess_0()
self.preprocessed = True
return self.traces
def sanity_check_aggregate(aggregate):
for key in aggregate:
if not 'param' in aggregate[key]:
raise RuntimeError('aggregate[{}][param] does not exist'.format(key))
if not 'attributes' in aggregate[key]:
raise RuntimeError('aggregate[{}][attributes] does not exist'.format(key))
for attribute in aggregate[key]['attributes']:
if not attribute in aggregate[key]:
raise RuntimeError('aggregate[{}][{}] does not exist, even though it is contained in aggregate[{}][attributes]'.format(key, attribute, key))
param_len = len(aggregate[key]['param'])
attr_len = len(aggregate[key][attribute])
if param_len != attr_len:
raise RuntimeError('parameter mismatch: len(aggregate[{}][param]) == {} != len(aggregate[{}][{}]) == {}'.format(key, param_len, key, attribute, attr_len))
class RawData:
"""
Loader for hardware model traces measured with MIMOSA.
Expects a specific trace format and UART log output (as produced by the
dfatool benchmark generator). Loads data, prunes bogus measurements, and
provides preprocessed data suitable for PTAModel.
"""
def __init__(self, filenames):
"""
Create a new RawData object.
Each filename element corresponds to a measurement run. It must be a tar archive with the following contents:
Version 0:
* `setup.json`: measurement setup. Must contain the keys `state_duration` (how long each state is active, in ms),
`mimosa_voltage` (voltage applied to dut, in V), and `mimosa_shunt` (shunt value, in Ohm)
* `src/apps/DriverEval/DriverLog.json`: PTA traces and parameters for this benchmark.
Layout: List of traces, each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
Each trace has an even number of elements, starting with the first state (usually `UNINITIALIZED`) and ending with a transition.
Each state/transition must have the members `.parameter` (parameter values, empty string or None if unknown), `.isa` ("state" or "transition") and `.name`.
Each transition must additionally contain `.plan.level` ("user" or "epilogue").
Example: `[ {"id": 1, "trace": [ {"parameter": {...}, "isa": "state", "name": "UNINITIALIZED"}, ...] }, ... ]
* At least one `*.mim` file. Each file corresponds to a single execution of the entire benchmark (i.e., all runs described in DriverLog.json) and starts with a MIMOSA Autocal calibration sequence.
MIMOSA files are parsed by the `MIMOSA` class.
Version 1:
* `ptalog.json`: measurement setup and traces. Contents:
`.opt.sleep`: state duration
`.opt.pta`: PTA
`.opt.traces`: list of sub-benchmark traces (the benchmark may have been split due to code size limitations). Each item is a list of traces as returned by `harness.traces`:
`.opt.traces[]`: List of traces. Each trace has an 'id' (numeric, starting with 1) and 'trace' (list of states and transitions) element.
Each state/transition must have the members '`parameter` (dict with normalized parameter values), `.isa` ("state" or "transition") and `.name`
Each transition must additionally contain `.args`
`.opt.files`: list of coresponding MIMOSA measurements.
`.opt.files[]` = ['abc123.mim']
`.opt.configs`: ....
tbd
"""
self.filenames = filenames.copy()
self.traces_by_fileno = []
self.setup_by_fileno = []
self.version = 0
self.preprocessed = False
self._parameter_names = None
with tarfile.open(filenames[0]) as tf:
for member in tf.getmembers():
if member.name == 'ptalog.json':
self.version = 1
break
def _state_is_too_short(self, online, offline, state_duration, next_transition):
# We cannot control when an interrupt causes a state to be left
if next_transition['plan']['level'] == 'epilogue':
return False
# Note: state_duration is stored as ms, not us
return offline['us'] < state_duration * 500
def _state_is_too_long(self, online, offline, state_duration, prev_transition):
# If the previous state was left by an interrupt, we may have some
# waiting time left over. So it's okay if the current state is longer
# than expected.
if prev_transition['plan']['level'] == 'epilogue':
return False
# state_duration is stored as ms, not us
return offline['us'] > state_duration * 1500
def _measurement_is_valid_01(self, processed_data):
"""
Check if a dfatool v0 or v1 measurement is valid.
processed_data layout:
'fileno' : measurement['fileno'],
'info' : measurement['info'],
'triggers' : len(trigidx),
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
'energy_trace' : mim.analyze_states(charges, trigidx, vcalfunc)
A sequence of unnamed, unparameterized states and transitions with
energy and timing data
'expected_trace' : trace from PTA DFS (with parameter data)
mim.analyze_states returns a list of (alternating) states and transitions.
Each element is a dict containing:
- isa: 'state' oder 'transition'
- clip_rate: range(0..1) Anteil an Clipping im Energieverbrauch
- raw_mean: Mittelwert der Rohwerte
- raw_std: Standardabweichung der Rohwerte
- uW_mean: Mittelwert der (kalibrierten) Leistungsaufnahme
- uW_std: Standardabweichung der (kalibrierten) Leistungsaufnahme
- us: Dauer
Nur falls isa == 'transition':
- timeout: Dauer des vorherigen Zustands
- uW_mean_delta_prev: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
- uW_mean_delta_next: Differenz zwischen uW_mean und uW_mean des Folgezustands
"""
setup = self.setup_by_fileno[processed_data['fileno']]
if 'expected_trace' in processed_data:
traces = processed_data['expected_trace']
else:
traces = self.traces_by_fileno[processed_data['fileno']]
state_duration = setup['state_duration']
# Check MIMOSA error
if processed_data['has_mimosa_error']:
processed_data['error'] = '; '.join(processed_data['mimosa_errors'])
return False
# Check trigger count
sched_trigger_count = 0
for run in traces:
sched_trigger_count += len(run['trace'])
if sched_trigger_count != processed_data['triggers']:
processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
got = processed_data['triggers'],
exp = sched_trigger_count
)
return False
# Check state durations. Very short or long states can indicate a
# missed trigger signal which wasn't detected due to duplicate
# triggers elsewhere
online_datapoints = []
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = processed_data['energy_trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if self._parameter_names == None:
self._parameter_names = sorted(online_trace_part['parameter'].keys())
if sorted(online_trace_part['parameter'].keys()) != self._parameter_names:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent parameter set: should be {param_want:s}, is {param_is:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
param_want = self._parameter_names,
param_is = sorted(online_trace_part['parameter'].keys())
)
if online_trace_part['isa'] != offline_trace_part['isa']:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
off_isa = offline_trace_part['isa'],
on_isa = online_trace_part['isa'])
return False
# Clipping in UNINITIALIZED (offline_idx == 0) can happen during
# calibration and is handled by MIMOSA
if offline_idx != 0 and offline_trace_part['clip_rate'] != 0:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
clip = offline_trace_part['clip_rate'] * 100,
)
return False
if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED' and len(traces[online_run_idx]['trace']) > online_trace_part_idx+1:
online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
try:
if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
if self._state_is_too_long(online_trace_part, offline_trace_part, state_duration, online_prev_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
except KeyError:
pass
# TODO es gibt next_transitions ohne 'plan'
return True
def _merge_online_and_offline(self, measurement):
# Edits self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline']
# and self.traces_by_fileno[measurement['fileno']][*]['trace'][*]['offline_aggregates'] in place
# (appends data from measurement['energy_trace'])
# If measurement['expected_trace'] exists, it is edited in place instead
online_datapoints = []
if 'expected_trace' in measurement:
traces = measurement['expected_trace']
traces = self.traces_by_fileno[measurement['fileno']]
else:
traces = self.traces_by_fileno[measurement['fileno']]
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = measurement['energy_trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if not 'offline' in online_trace_part:
online_trace_part['offline'] = [offline_trace_part]
else:
online_trace_part['offline'].append(offline_trace_part)
paramkeys = sorted(online_trace_part['parameter'].keys())
paramvalue = [soft_cast_int(online_trace_part['parameter'][x]) for x in paramkeys]
# NB: Unscheduled transitions do not have an 'args' field set.
# However, they should only be caused by interrupts, and
# interrupts don't have args anyways.
if arg_support_enabled and 'args' in online_trace_part:
paramvalue.extend(map(soft_cast_int, online_trace_part['args']))
if not 'offline_aggregates' in online_trace_part:
online_trace_part['offline_attributes'] = ['power', 'duration', 'energy']
online_trace_part['offline_aggregates'] = {
'power' : [],
'duration' : [],
'power_std' : [],
'energy' : [],
'paramkeys' : [],
'param': [],
}
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next', 'timeout'])
online_trace_part['offline_aggregates']['rel_energy_prev'] = []
online_trace_part['offline_aggregates']['rel_energy_next'] = []
online_trace_part['offline_aggregates']['timeout'] = []
# Note: All state/transitions are 20us "too long" due to injected
# active wait states. These are needed to work around MIMOSA's
# relatively low sample rate of 100 kHz (10us) and removed here.
online_trace_part['offline_aggregates']['power'].append(
offline_trace_part['uW_mean'])
online_trace_part['offline_aggregates']['duration'].append(
offline_trace_part['us'] - 20)
online_trace_part['offline_aggregates']['power_std'].append(
offline_trace_part['uW_std'])
online_trace_part['offline_aggregates']['energy'].append(
offline_trace_part['uW_mean'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['paramkeys'].append(paramkeys)
online_trace_part['offline_aggregates']['param'].append(paramvalue)
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_aggregates']['rel_energy_prev'].append(
offline_trace_part['uW_mean_delta_prev'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['rel_energy_next'].append(
offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['timeout'].append(
offline_trace_part['timeout'])
def _concatenate_traces(self, list_of_traces):
trace_output = list()
for trace in list_of_traces:
trace_output.extend(trace.copy())
for i, trace in enumerate(trace_output):
trace['orig_id'] = trace['id']
trace['id'] = i
return trace_output
def get_preprocessed_data(self, verbose = True):
"""
Return a list of DFA traces annotated with energy, timing, and parameter data.
Each DFA trace contains the following elements:
* `id`: Numeric ID, starting with 1
* `total_energy`: Total amount of energy (as measured by MIMOSA) in the entire trace
* `orig_id`: Original trace ID. May differ when concatenating multiple (different) benchmarks into one analysis, i.e., when calling RawData() with more than one file argument.
* `trace`: List of the individual states and transitions in this trace. Always contains an even number of elements, staring with the first state (typically "UNINITIALIZED") and ending with a transition.
Each trace element (that is, an entry of the `trace` list mentioned above) contains the following elements:
* `isa`: "state" or "transition"
* `name`: name
* `offline`: List of offline measumerents for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
Entry contents:
- `clip_rate`: rate of clipped energy measurements, 0 .. 1
- `raw_mean`: mean raw MIMOSA value
- `raw_std`: standard deviation of raw MIMOSA value
- `uW_mean`: mean power draw, uW
- `uw_std`: standard deviation of power draw, uW
- `us`: state/transition duration, us
- `uW_mean_delta_prev`: (only for transitions) difference between uW_mean of this transition and uW_mean of previous state
- `uW_mean_elta_next`: (only for transitions) difference between uW_mean of this transition and uW_mean of next state
- `timeout`: (only for transitions) duration of previous state, us
* `offline_aggregates`: Aggregate of `offline` entries. dict of lists, each list entry has the same length
- `duration`: state/transition durations ("us"), us
- `energy`: state/transition energy ("us * uW_mean"), us
- `power`: mean power draw ("uW_mean"), uW
- `power_std`: standard deviations of power draw ("uW_std"), uW^2
- `paramkeys`: List of lists, each sub-list contains the parameter names corresponding to the `param` entries
- `param`: List of lists, each sub-list contains the parameter values for this measurement. Typically, all sub-lists are the same.
- `rel_energy_prev`: (only for transitions) transition energy relative to previous state mean power, pJ
- `rel_energy_next`: (only for transitions) transition energy relative to next state mean power, pJ
- `timeout`: (only for transitions) duration of previous state, us
* `offline_attributes`: List containing the keys of `offline_aggregates` which are meant to be part of themodel.
This list ultimately decides which hardware/software attributes the model describes.
If isa == state, it contains power, duration, energy
If isa == transition, it contains power, duration, energy, rel_energy_prev, rel_energy_next, timeout
* `online`: List of online estimations for this state/transition. Each entry contains a result for this state/transition during one benchmark execution.
Entry contents for isa == state:
- `time`: state/transition
Entry contents for isa == transition:
- `timeout`: Duration of previous state, measured using on-board timers
* `parameter`: dictionary describing parameter values for this state/transition. Parameter values refer to the begin of the state/transition and do not account for changes made by the transition.
* `plan`: Dictionary describing expected behaviour according to schedule / offline model.
Contents for isa == state: `energy`, `power`, `time`
Contents for isa == transition: `energy`, `timeout`, `level`.
If level is "user", the transition is part of the regular driver API. If level is "epilogue", it is an interrupt service routine and not called explicitly.
Each transition also contains:
* `args`: List of arguments the corresponding function call was called with. args entries are strings which are not necessarily numeric
* `code`: List of function name (first entry) and arguments (remaining entries) of the corresponding function call
"""
self.verbose = verbose
if self.preprocessed:
return self.traces
if self.version == 0:
self._preprocess_01(0)
elif self.version == 1:
self._preprocess_01(1)
self.preprocessed = True
return self.traces
def _preprocess_01(self, version):
"""Load raw MIMOSA data and turn it into measurements which are ready to be analyzed."""
mim_files = []
for i, filename in enumerate(self.filenames):
if version == 0:
with tarfile.open(filename) as tf:
self.setup_by_fileno.append(json.load(tf.extractfile('setup.json')))
self.traces_by_fileno.append(json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')))
for member in tf.getmembers():
_, extension = os.path.splitext(member.name)
if extension == '.mim':
mim_files.append({
'content' : tf.extractfile(member).read(),
'fileno' : i,
'info' : member,
'setup' : self.setup_by_fileno[i],
})
elif version == 1:
new_filenames = list()
with tarfile.open(filename) as tf:
ptalog = json.load(tf.extractfile(tf.getmember('ptalog.json')))
# ptalog['traces'] is a list of lists.
# The first level corresponds to the individual .mim files:
# ptalog['traces'][0] contains all traces belonging to the
# first .mim file in the archive.
# The second level holds the individual runs in this
# sub-benchmark, so ptalog['traces'][0][0] is the first
# run, ptalog['traces'][0][1] the second, and so on
for j, traces in enumerate(ptalog['traces']):
new_filenames.append('{}#{}'.format(filename, j))
self.traces_by_fileno.append(traces)
self.setup_by_fileno.append({
'mimosa_voltage' : ptalog['configs'][j]['voltage'],
'mimosa_shunt' : ptalog['configs'][j]['shunt'],
'state_duration' : ptalog['opt']['sleep'],
})
for mim_file in ptalog['files'][j]:
member = tf.getmember(mim_file)
mim_files.append({
'content' : tf.extractfile(member).read(),
'fileno' : j,
'info' : member,
'setup' : self.setup_by_fileno[j],
'expected_trace' : ptalog['traces'][j],
})
self.filenames = new_filenames
with Pool() as pool:
measurements = pool.map(_preprocess_measurement, mim_files)
num_valid = 0
valid_traces = list()
for measurement in measurements:
if version == 0:
# Strip the last state (it is not part of the scheduled measurement)
measurement['energy_trace'].pop()
repeat = 0
elif version == 1:
# The first online measurement is the UNINITIALIZED state. In v1,
# it is not part of the expected PTA trace -> remove it.
measurement['energy_trace'].pop(0)
repeat = ptalog['opt']['repeat']
if self._measurement_is_valid_01(measurement):
self._merge_online_and_offline(measurement)
num_valid += 1
else:
vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
ar = self.filenames[measurement['fileno']],
m = measurement['info'].name,
e = measurement['error']))
vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
if version == 0:
self.traces = self._concatenate_traces(self.traces_by_fileno)
elif version == 1:
self.traces = self._concatenate_traces(map(lambda x: x['expected_trace'], measurements))
self.traces = self._concatenate_traces(self.traces_by_fileno)
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid
}
class ParallelParamFit:
"""
Fit a set of functions on parameterized measurements.
One parameter is variale, all others are fixed. Reports the best-fitting
function type for each parameter.
"""
def __init__(self, by_param):
"""Create a new ParallelParamFit object."""
self.fit_queue = []
self.by_param = by_param
def enqueue(self, state_or_tran, attribute, param_index, param_name, safe_functions_enabled = False):
"""
Add state_or_tran/attribute/param_name to fit queue.
This causes fit() to compute the best-fitting function for this model part.
"""
self.fit_queue.append({
'key' : [state_or_tran, attribute, param_name],
'args' : [self.by_param, state_or_tran, attribute, param_index, safe_functions_enabled]
})
def fit(self):
"""
Fit functions on previously enqueue data.
Fitting is one in parallel with one process per core.
Results can be accessed using the public ParallelParamFit.results object.
"""
with Pool() as pool:
self.results = pool.map(_try_fits_parallel, self.fit_queue)
def _try_fits_parallel(arg):
"""
Call _try_fits(*arg['args']) and return arg['key'] and the _try_fits result.
Must be a global function as it is called from a multiprocessing Pool.
"""
return {
'key' : arg['key'],
'result' : _try_fits(*arg['args'])
}
def _try_fits(by_param, state_or_tran, model_attribute, param_index, safe_functions_enabled = False):
"""
Determine goodness-of-fit for prediction of `by_param[(state_or_tran, *)][model_attribute]` dependence on `param_index` using various functions.
This is done by varying `param_index` while keeping all other parameters constant and doing one least squares optimization for each function and for each combination of the remaining parameters.
The value of the parameter corresponding to `param_index` (e.g. txpower or packet length) is the sole input to the model function.
:return: a dictionary with the following elements:
best -- name of the best-fitting function (see `analytic.functions`)
best_rmsd -- mean Root Mean Square Deviation of best-fitting function over all combinations of the remaining parameters
mean_rmsd -- mean Root Mean Square Deviation of a reference model using the mean of its respective input data as model value
median_rmsd -- mean Root Mean Square Deviation of a reference model using the median of its respective input data as model value
results -- mean goodness-of-fit measures for the individual functions. See `analytic.functions` for keys and `aggregate_measures` for values
:param by_param: measurements partitioned by state/transition/... name and parameter values.
Example: `{('foo', (0, 2)): {'bar': [2]}, ('foo', (0, 4)): {'bar': [4]}, ('foo', (0, 6)): {'bar': [6]}}`
:param state_or_tran: state/transition/... name for which goodness-of-fit will be calculated (first element of by_param key tuple).
Example: `'foo'`
:param model_attribute: attribute for which goodness-of-fit will be calculated.
Example: `'bar'`
:param param_index: index of the parameter used as model input
:param safe_functions_enabled: Include "safe" variants of functions with limited argument range.
"""
functions = analytic.functions(safe_functions_enabled = safe_functions_enabled)
for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
# We might remove elements from 'functions' while iterating over
# its keys. A generator will not allow this, so we need to
# convert to a list.
function_names = list(functions.keys())
for function_name in function_names:
function_object = functions[function_name]
if is_numeric(param_key[1][param_index]) and not function_object.is_valid(param_key[1][param_index]):
functions.pop(function_name, None)
raw_results = dict()
raw_results_by_param = dict()
ref_results = {
'mean' : list(),
'median' : list()
}
results = dict()
results_by_param = dict()
seen_parameter_combinations = set()
# for each parameter combination:
for param_key in filter(lambda x: x[0] == state_or_tran and remove_index_from_tuple(x[1], param_index) not in seen_parameter_combinations, by_param.keys()):
X = []
Y = []
num_valid = 0
num_total = 0
# Ensure that each parameter combination is only optimized once. Otherwise, with parameters (1, 2, 5), (1, 3, 5), (1, 4, 5) and param_index == 1,
# the parameter combination (1, *, 5) would be optimized three times, both wasting time and biasing results towards more frequently occuring combinations of non-param_index parameters
seen_parameter_combinations.add(remove_index_from_tuple(param_key[1], param_index))
# for each value of the parameter denoted by param_index (all other parameters remain the same):
for k, v in filter(lambda kv: param_slice_eq(kv[0], param_key, param_index), by_param.items()):
num_total += 1
if is_numeric(k[1][param_index]):
num_valid += 1
X.extend([float(k[1][param_index])] * len(v[model_attribute]))
Y.extend(v[model_attribute])
if num_valid > 2:
X = np.array(X)
Y = np.array(Y)
other_parameters = remove_index_from_tuple(k[1], param_index)
raw_results_by_param[other_parameters] = dict()
results_by_param[other_parameters] = dict()
for function_name, param_function in functions.items():
if not function_name in raw_results:
raw_results[function_name] = dict()
error_function = param_function.error_function
res = optimize.least_squares(error_function, [0, 1], args=(X, Y), xtol=2e-15)
measures = regression_measures(param_function.eval(res.x, X), Y)
raw_results_by_param[other_parameters][function_name] = measures
for measure, error_rate in measures.items():
if not measure in raw_results[function_name]:
raw_results[function_name][measure] = list()
raw_results[function_name][measure].append(error_rate)
#print(function_name, res, measures)
mean_measures = aggregate_measures(np.mean(Y), Y)
ref_results['mean'].append(mean_measures['rmsd'])
raw_results_by_param[other_parameters]['mean'] = mean_measures
median_measures = aggregate_measures(np.median(Y), Y)
ref_results['median'].append(median_measures['rmsd'])
raw_results_by_param[other_parameters]['median'] = median_measures
if not len(ref_results['mean']):
# Insufficient data for fitting
#print('[W] Insufficient data for fitting {}/{}/{}'.format(state_or_tran, model_attribute, param_index))
return {
'best' : None,
'best_rmsd' : np.inf,
'results' : results
}
for other_parameter_combination, other_parameter_results in raw_results_by_param.items():
best_fit_val = np.inf
best_fit_name = None
results = dict()
for function_name, result in other_parameter_results.items():
if len(result) > 0:
results[function_name] = result
rmsd = result['rmsd']
if rmsd < best_fit_val:
best_fit_val = rmsd
best_fit_name = function_name
results_by_param[other_parameter_combination] = {
'best': best_fit_name,
'best_rmsd': best_fit_val,
'mean_rmsd' : results['mean']['rmsd'],
'median_rmsd' : results['median']['rmsd'],
'results' : results
}
best_fit_val = np.inf
best_fit_name = None
results = dict()
for function_name, result in raw_results.items():
if len(result) > 0:
results[function_name] = {}
for measure in result.keys():
results[function_name][measure] = np.mean(result[measure])
rmsd = results[function_name]['rmsd']
if rmsd < best_fit_val:
best_fit_val = rmsd
best_fit_name = function_name
return {
'best' : best_fit_name,
'best_rmsd' : best_fit_val,
'mean_rmsd' : np.mean(ref_results['mean']),
'median_rmsd' : np.mean(ref_results['median']),
'results' : results,
'results_by_other_param' : results_by_param
}
def _num_args_from_by_name(by_name):
num_args = dict()
for key, value in by_name.items():
if 'args' in value:
num_args[key] = len(value['args'][0])
return num_args
def get_fit_result(results, name, attribute, verbose = False):
"""
Parse and sanitize fit results for state/transition/... 'name' and model attribute 'attribute'.
Filters out results where the best function is worse (or not much better than) static mean/median estimates.
:param results: fit results as returned by `paramfit.results`
:param name: state/transition/... name, e.g. 'TX'
:param attribute: model attribute, e.g. 'duration'
:param verbose: print debug message to stdout when deliberately not using a determined fit function
"""
fit_result = dict()
for result in results:
if result['key'][0] == name and result['key'][1] == attribute and result['result']['best'] != None:
this_result = result['result']
if this_result['best_rmsd'] >= min(this_result['mean_rmsd'], this_result['median_rmsd']):
vprint(verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
name, attribute, result['key'][2], this_result['best_rmsd'],
this_result['mean_rmsd'], this_result['median_rmsd']))
# See notes on depends_on_param
elif this_result['best_rmsd'] >= 0.8 * min(this_result['mean_rmsd'], this_result['median_rmsd']):
vprint(verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ref ({:.0f}, {:.0f})'.format(
name, attribute, result['key'][2], this_result['best_rmsd'],
this_result['mean_rmsd'], this_result['median_rmsd']))
else:
fit_result[result['key'][2]] = this_result
return fit_result
class AnalyticModel:
u"""
Parameter-aware analytic energy/data size/... model.
Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.
These provide measurements aggregated by (function/state/...) name
and (for by_param) parameter values. Layout:
dictionary with one key per name ('send', 'TX', ...) or
one key per name and parameter combination
(('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
Parameter values must be ordered corresponding to the lexically sorted parameter names.
Each element is in turn a dict with the following elements:
- param: list of parameter values in each measurement (-> list of lists)
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
- for each attribute mentioned in 'attributes': A list with measurements.
All list except for 'attributes' must have the same length.
For example:
parameters = ['foo_count', 'irrelevant']
by_name = {
'foo' : [1, 1, 2],
'bar' : [5, 6, 7],
'attributes' : ['foo', 'bar'],
'param' : [[1, 0], [1, 0], [2, 0]]
}
methods:
get_static -- return static (parameter-unaware) model.
get_param_lut -- return parameter-aware look-up-table model. Cannot model parameter combinations not present in by_param.
get_fitted -- return parameter-aware model using fitted functions for behaviour prediction.
variables:
names -- function/state/... names (i.e., the keys of by_name)
parameters -- parameter names
stats -- ParamStats object providing parameter-dependency statistics for each name and attribute
assess -- calculate model quality
"""
def __init__(self, by_name, parameters, arg_count = None, function_override = dict(), verbose = True, use_corrcoef = False):
"""
Create a new AnalyticModel and compute parameter statistics.
:param by_name: measurements aggregated by (function/state/...) name.
Layout: dictionary with one key per name ('send', 'TX', ...) or
one key per name and parameter combination
(('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
Parameter values must be ordered corresponding to the lexically sorted parameter names.
Each element is in turn a dict with the following elements:
- param: list of parameter values in each measurement (-> list of lists)
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
- for each attribute mentioned in 'attributes': A list with measurements.
All list except for 'attributes' must have the same length.
For example:
parameters = ['foo_count', 'irrelevant']
by_name = {
'foo' : [1, 1, 2],
'duration' : [5, 6, 7],
'attributes' : ['foo', 'duration'],
'param' : [[1, 0], [1, 0], [2, 0]]
# foo_count-^ ^-irrelevant
}
:param parameters: List of parameter names
:param function_override: dict of overrides for automatic parameter function generation.
If (state or transition name, model attribute) is present in function_override,
the corresponding text string is the function used for analytic (parameter-aware/fitted)
modeling of this attribute. It is passed to AnalyticFunction, see
there for the required format. Note that this happens regardless of
parameter dependency detection: The provided analytic function will be assigned
even if it seems like the model attribute is static / parameter-independent.
:param verbose: Print debug/info output while generating the model?
:param use_corrcoef: use correlation coefficient instead of stddev comparison to detect whether a model attribute depends on a parameter
"""
self.cache = dict()
self.by_name = by_name
self.by_param = by_name_to_by_param(by_name)
self.names = sorted(by_name.keys())
self.parameters = sorted(parameters)
self.function_override = function_override.copy()
self.verbose = verbose
self._use_corrcoef = use_corrcoef
self._num_args = arg_count
if self._num_args is None:
self._num_args = _num_args_from_by_name(by_name)
self.stats = ParamStats(self.by_name, self.by_param, self.parameters, self._num_args, verbose = verbose, use_corrcoef = use_corrcoef)
def _get_model_from_dict(self, model_dict, model_function):
model = {}
for name, elem in model_dict.items():
model[name] = {}
for key in elem['attributes']:
try:
model[name][key] = model_function(elem[key])
except RuntimeWarning:
vprint(self.verbose, '[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
vprint(self.verbose, '[W] Got no data for {} {}: {}'.format(name, key, fpe))
return model
def param_index(self, param_name):
if param_name in self.parameters:
return self.parameters.index(param_name)
return len(self.parameters) + int(param_name)
def param_name(self, param_index):
if param_index < len(self.parameters):
return self.parameters[param_index]
return str(param_index)
def get_static(self):
"""
Get static model function: name, attribute -> model value.
Uses the median of by_name for modeling.
"""
static_model = self._get_model_from_dict(self.by_name, np.median)
def static_median_getter(name, key, **kwargs):
return static_model[name][key]
return static_median_getter
def get_static_using_mean(self):
"""
Get static model function: name, attribute -> model value.
Uses the mean of by_name for modeling.
"""
static_model = self._get_model_from_dict(self.by_name, np.mean)
def static_mean_getter(name, key, **kwargs):
return static_model[name][key]
return static_mean_getter
def get_param_lut(self, fallback = False):
"""
Get parameter-look-up-table model function: name, attribute, parameter values -> model value.
The function can only give model values for parameter combinations
present in by_param. By default, it raises KeyError for other values.
arguments:
fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
"""
static_model = self._get_model_from_dict(self.by_name, np.median)
lut_model = self._get_model_from_dict(self.by_param, np.median)
def lut_median_getter(name, key, param, arg = [], **kwargs):
param.extend(map(soft_cast_int, arg))
try:
return lut_model[(name, tuple(param))][key]
except KeyError:
if fallback:
return static_model[name][key]
raise
return lut_median_getter
def get_fitted(self, safe_functions_enabled = False):
"""
Get paramete-aware model function and model information function.
Returns two functions:
model_function(name, attribute, param=parameter values) -> model value.
model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
"""
if 'fitted_model_getter' in self.cache and 'fitted_info_getter' in self.cache:
return self.cache['fitted_model_getter'], self.cache['fitted_info_getter']
static_model = self._get_model_from_dict(self.by_name, np.median)
param_model = dict([[name, {}] for name in self.by_name.keys()])
paramfit = ParallelParamFit(self.by_param)
for name in self.by_name.keys():
for attribute in self.by_name[name]['attributes']:
for param_index, param in enumerate(self.parameters):
if self.stats.depends_on_param(name, attribute, param):
paramfit.enqueue(name, attribute, param_index, param, False)
if arg_support_enabled and name in self._num_args:
for arg_index in range(self._num_args[name]):
if self.stats.depends_on_arg(name, attribute, arg_index):
paramfit.enqueue(name, attribute, len(self.parameters) + arg_index, arg_index, False)
paramfit.fit()
for name in self.by_name.keys():
num_args = 0
if name in self._num_args:
num_args = self._num_args[name]
for attribute in self.by_name[name]['attributes']:
fit_result = get_fit_result(paramfit.results, name, attribute, self.verbose)
if (name, attribute) in self.function_override:
function_str = self.function_override[(name, attribute)]
x = AnalyticFunction(function_str, self.parameters, num_args)
x.fit(self.by_param, name, attribute)
if x.fit_success:
param_model[name][attribute] = {
'fit_result': fit_result,
'function' : x
}
elif len(fit_result.keys()):
x = analytic.function_powerset(fit_result, self.parameters, num_args)
x.fit(self.by_param, name, attribute)
if x.fit_success:
param_model[name][attribute] = {
'fit_result': fit_result,
'function' : x
}
def model_getter(name, key, **kwargs):
if 'arg' in kwargs and 'param' in kwargs:
kwargs['param'].extend(map(soft_cast_int, kwargs['arg']))
if key in param_model[name]:
param_list = kwargs['param']
param_function = param_model[name][key]['function']
if param_function.is_predictable(param_list):
return param_function.eval(param_list)
return static_model[name][key]
def info_getter(name, key):
if key in param_model[name]:
return param_model[name][key]
return None
self.cache['fitted_model_getter'] = model_getter
self.cache['fitted_info_getter'] = info_getter
return model_getter, info_getter
def assess(self, model_function):
"""
Calculate MAE, SMAPE, etc. of model_function for each by_name entry.
state/transition/... name and parameter values are fed into model_function.
The by_name entries of this AnalyticModel are used as ground truth and
compared with the values predicted by model_function.
For proper model assessments, the data used to generate model_function
and the data fed into this AnalyticModel instance must be mutually
exclusive (e.g. by performing cross validation). Otherwise,
overfitting cannot be detected.
"""
detailed_results = {}
for name, elem in sorted(self.by_name.items()):
detailed_results[name] = {}
for attribute in elem['attributes']:
predicted_data = np.array(list(map(lambda i: model_function(name, attribute, param=elem['param'][i]), range(len(elem[attribute])))))
measures = regression_measures(predicted_data, elem[attribute])
detailed_results[name][attribute] = measures
return {
'by_name' : detailed_results,
}
def to_json(self):
# TODO
pass
def _add_trace_data_to_aggregate(aggregate, key, element):
# Only cares about element['isa'], element['offline_aggregates'], and
# element['plan']['level']
if not key in aggregate:
aggregate[key] = {
'isa' : element['isa']
}
for datakey in element['offline_aggregates'].keys():
aggregate[key][datakey] = []
if element['isa'] == 'state':
aggregate[key]['attributes'] = ['power']
else:
# TODO do not hardcode values
aggregate[key]['attributes'] = ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']
# Uncomment this line if you also want to analyze mean transition power
#aggrgate[key]['attributes'].append('power')
if 'plan' in element and element['plan']['level'] == 'epilogue':
aggregate[key]['attributes'].insert(0, 'timeout')
attributes = aggregate[key]['attributes'].copy()
for attribute in attributes:
if attribute not in element['offline_aggregates']:
aggregate[key]['attributes'].remove(attribute)
for datakey, dataval in element['offline_aggregates'].items():
aggregate[key][datakey].extend(dataval)
def filter_aggregate_by_param(aggregate, parameters, parameter_filter):
"""
Remove entries with certain parameter values from `aggregate`.
:param aggregate: aggregated measurement data, must be a dict conforming to
aggregate[state or transition name]['param'] = (first parameter value, second parameter value, ...)
and
aggregate[state or transition name]['attributes'] = [list of keys with measurement data, e.g. 'power' or 'duration']
:param parameters: list of parameters, used to map parameter index to parameter name. parameters=['foo', ...] means 'foo' is the first parameter
:param parameter_filter: [[name, value], [name, value], ...] list of parameter values to remove. Values refer to normalizad parameter data.
"""
for param_name_and_value in parameter_filter:
param_index = parameters.index(param_name_and_value[0])
param_value = soft_cast_int(param_name_and_value[1])
names_to_remove = set()
for name in aggregate.keys():
indices_to_keep = list(map(lambda x: x[param_index] == param_value, aggregate[name]['param']))
aggregate[name]['param'] = list(map(lambda iv: iv[1], filter(lambda iv: indices_to_keep[iv[0]], enumerate(aggregate[name]['param']))))
for attribute in aggregate[name]['attributes']:
aggregate[name][attribute] = aggregate[name][attribute][indices_to_keep]
if len(aggregate[name][attribute]) == 0:
names_to_remove.add(name)
for name in names_to_remove:
aggregate.pop(name)
def pta_trace_to_aggregate(traces, ignore_trace_indexes = []):
u"""
Convert preprocessed DFA traces from peripherals/drivers to by_name aggregate for PTAModel.
arguments:
traces -- [ ... Liste von einzelnen Läufen (d.h. eine Zustands- und Transitionsfolge UNINITIALIZED -> foo -> FOO -> bar -> BAR -> ...)
Jeder Lauf:
- id: int Nummer des Laufs, beginnend bei 1
- trace: [ ... Liste von Zuständen und Transitionen
Jeweils:
- name: str Name
- isa: str state // transition
- parameter: { ... globaler Parameter: aktueller wert. null falls noch nicht eingestellt }
- args: [ Funktionsargumente, falls isa == 'transition' ]
- offline_aggregates:
- power: [float(uW)] Mittlere Leistung während Zustand/Transitions
- power_std: [float(uW^2)] Standardabweichung der Leistung
- duration: [int(us)] Dauer
- energy: [float(pJ)] Energieaufnahme des Zustands / der Transition
- clip_rate: [float(0..1)] Clipping
- paramkeys: [[str]] Name der berücksichtigten Parameter
- param: [int // str] Parameterwerte. Quasi-Duplikat von 'parameter' oben
Falls isa == 'transition':
- timeout: [int(us)] Dauer des vorherigen Zustands
- rel_energy_prev: [int(pJ)]
- rel_energy_next: [int(pJ)]
]
]
ignore_trace_indexes -- list of trace indexes. The corresponding taces will be ignored.
returns a tuple of three elements:
by_name -- measurements aggregated by state/transition name, annotated with parameter values
parameter_names -- list of parameter names
arg_count -- dict mapping transition names to the number of arguments of their corresponding driver function
by_name layout:
Dictionary with one key per state/transition ('send', 'TX', ...).
Each element is in turn a dict with the following elements:
- isa: 'state' or 'transition'
- power: list of mean power measurements in µW
- duration: list of durations in µs
- power_std: list of stddev of power per state/transition
- energy: consumed energy (power*duration) in pJ
- paramkeys: list of parameter names in each measurement (-> list of lists)
- param: list of parameter values in each measurement (-> list of lists)
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
additionally, only if isa == 'transition':
- timeout: list of duration of previous state in µs
- rel_energy_prev: transition energy relative to previous state mean power in pJ
- rel_energy_next: transition energy relative to next state mean power in pJ
"""
arg_count = dict()
by_name = dict()
parameter_names = sorted(traces[0]['trace'][0]['parameter'].keys())
for run in traces:
if run['id'] not in ignore_trace_indexes:
for elem in run['trace']:
if elem['isa'] == 'transition' and not elem['name'] in arg_count and 'args' in elem:
arg_count[elem['name']] = len(elem['args'])
if elem['name'] != 'UNINITIALIZED':
_add_trace_data_to_aggregate(by_name, elem['name'], elem)
for elem in by_name.values():
for key in elem['attributes']:
elem[key] = np.array(elem[key])
return by_name, parameter_names, arg_count
class PTAModel:
u"""
Parameter-aware PTA-based energy model.
Supports both static and parameter-based model attributes, and automatic detection of parameter-dependence.
The model heavily relies on two internal data structures:
PTAModel.by_name and PTAModel.by_param.
These provide measurements aggregated by state/transition name
and (in case of by_para) parameter values. Layout:
dictionary with one key per state/transition ('send', 'TX', ...) or
one key per state/transition and parameter combination
(('send', (1, 2)), ('send', (2, 3)), ('TX', (1, 2)), ('TX', (2, 3)), ...).
For by_param, parameter values are ordered corresponding to the lexically sorted parameter names.
Each element is in turn a dict with the following elements:
- isa: 'state' or 'transition'
- power: list of mean power measurements in µW
- duration: list of durations in µs
- power_std: list of stddev of power per state/transition
- energy: consumed energy (power*duration) in pJ
- paramkeys: list of parameter names in each measurement (-> list of lists)
- param: list of parameter values in each measurement (-> list of lists)
- attributes: list of keys that should be analyzed,
e.g. ['power', 'duration']
additionally, only if isa == 'transition':
- timeout: list of duration of previous state in µs
- rel_energy_prev: transition energy relative to previous state mean power in pJ
- rel_energy_next: transition energy relative to next state mean power in pJ
"""
def __init__(self, by_name, parameters, arg_count, traces = [], ignore_trace_indexes = [], discard_outliers = None, function_override = {}, verbose = True, use_corrcoef = False, hwmodel = None):
"""
Prepare a new PTA energy model.
Actual model generation is done on-demand by calling the respective functions.
arguments:
by_name -- state/transition measurements aggregated by name, as returned by pta_trace_to_aggregate.
parameters -- list of parameter names, as returned by pta_trace_to_aggregate
arg_count -- function arguments, as returned by pta_trace_to_aggregate
traces -- list of preprocessed DFA traces, as returned by RawData.get_preprocessed_data()
ignore_trace_indexes -- list of trace indexes. The corresponding traces will be ignored.
discard_outliers -- currently not supported: threshold for outlier detection and removel (float).
Outlier detection is performed individually for each state/transition in each trace,
so it only works if the benchmark ran several times.
Given "data" (a set of measurements of the same thing, e.g. TX duration in the third benchmark trace),
"m" (the median of all attribute measurements with the same parameters, which may include data from other traces),
a data point X is considered an outlier if
| 0.6745 * (X - m) / median(|data - m|) | > discard_outliers .
function_override -- dict of overrides for automatic parameter function generation.
If (state or transition name, model attribute) is present in function_override,
the corresponding text string is the function used for analytic (parameter-aware/fitted)
modeling of this attribute. It is passed to AnalyticFunction, see
there for the required format. Note that this happens regardless of
parameter dependency detection: The provided analytic function will be assigned
even if it seems like the model attribute is static / parameter-independent.
verbose -- print informative output, e.g. when removing an outlier
use_corrcoef -- use correlation coefficient instead of stddev comparison
to detect whether a model attribute depends on a parameter
hwmodel -- hardware model suitable for PTA.from_hwmodel
"""
self.by_name = by_name
self.by_param = by_name_to_by_param(by_name)
self._parameter_names = sorted(parameters)
self._num_args = arg_count
self._use_corrcoef = use_corrcoef
self.traces = traces
self.stats = ParamStats(self.by_name, self.by_param, self._parameter_names, self._num_args, self._use_corrcoef, verbose = verbose)
self.cache = {}
np.seterr('raise')
self._outlier_threshold = discard_outliers
self.function_override = function_override.copy()
self.verbose = verbose
self.hwmodel = hwmodel
self.ignore_trace_indexes = ignore_trace_indexes
self._aggregate_to_ndarray(self.by_name)
def distinct_param_values(self, state_or_tran, param_index = None, arg_index = None):
if param_index != None:
param_values = map(lambda x: x[param_index], self.by_name[state_or_tran]['param'])
return sorted(set(param_values))
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
for key in elem['attributes']:
elem[key] = np.array(elem[key])
# This heuristic is very similar to the "function is not much better than
# median" checks in get_fitted. So far, doing it here as well is mostly
# a performance and not an algorithm quality decision.
# --df, 2018-04-18
def depends_on_param(self, state_or_trans, key, param):
return self.stats.depends_on_param(state_or_trans, key, param)
# See notes on depends_on_param
def depends_on_arg(self, state_or_trans, key, param):
return self.stats.depends_on_arg(state_or_trans, key, param)
def _get_model_from_dict(self, model_dict, model_function):
model = {}
for name, elem in model_dict.items():
model[name] = {}
for key in elem['attributes']:
try:
model[name][key] = model_function(elem[key])
except RuntimeWarning:
vprint(self.verbose, '[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
vprint(self.verbose, '[W] Got no data for {} {}: {}'.format(name, key, fpe))
return model
def get_static(self):
"""
Get static model function: name, attribute -> model value.
Uses the median of by_name for modeling.
"""
static_model = self._get_model_from_dict(self.by_name, np.median)
def static_median_getter(name, key, **kwargs):
return static_model[name][key]
return static_median_getter
def get_static_using_mean(self):
"""
Get static model function: name, attribute -> model value.
Uses the mean of by_name for modeling.
"""
static_model = self._get_model_from_dict(self.by_name, np.mean)
def static_mean_getter(name, key, **kwargs):
return static_model[name][key]
return static_mean_getter
def get_param_lut(self, fallback = False):
"""
Get parameter-look-up-table model function: name, attribute, parameter values -> model value.
The function can only give model values for parameter combinations
present in by_param. By default, it raises KeyError for other values.
arguments:
fallback -- Fall back to the (non-parameter-aware) static model when encountering unknown parameter values
"""
static_model = self._get_model_from_dict(self.by_name, np.median)
lut_model = self._get_model_from_dict(self.by_param, np.median)
def lut_median_getter(name, key, param, arg = [], **kwargs):
param.extend(map(soft_cast_int, arg))
try:
return lut_model[(name, tuple(param))][key]
except KeyError:
if fallback:
return static_model[name][key]
raise
return lut_median_getter
def param_index(self, param_name):
if param_name in self._parameter_names:
return self._parameter_names.index(param_name)
return len(self._parameter_names) + int(param_name)
def param_name(self, param_index):
if param_index < len(self._parameter_names):
return self._parameter_names[param_index]
return str(param_index)
def get_fitted(self, safe_functions_enabled = False):
"""
Get paramete-aware model function and model information function.
Returns two functions:
model_function(name, attribute, param=parameter values) -> model value.
model_info(name, attribute) -> {'fit_result' : ..., 'function' : ... } or None
"""
if 'fitted_model_getter' in self.cache and 'fitted_info_getter' in self.cache:
return self.cache['fitted_model_getter'], self.cache['fitted_info_getter']
static_model = self._get_model_from_dict(self.by_name, np.median)
param_model = dict([[state_or_tran, {}] for state_or_tran in self.by_name.keys()])
paramfit = ParallelParamFit(self.by_param)
for state_or_tran in self.by_name.keys():
for model_attribute in self.by_name[state_or_tran]['attributes']:
fit_results = {}
for parameter_index, parameter_name in enumerate(self._parameter_names):
if self.depends_on_param(state_or_tran, model_attribute, parameter_name):
paramfit.enqueue(state_or_tran, model_attribute, parameter_index, parameter_name, safe_functions_enabled)
if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
for arg_index in range(self._num_args[state_or_tran]):
if self.depends_on_arg(state_or_tran, model_attribute, arg_index):
paramfit.enqueue(state_or_tran, model_attribute, len(self._parameter_names) + arg_index, arg_index, safe_functions_enabled)
paramfit.fit()
for state_or_tran in self.by_name.keys():
num_args = 0
if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
num_args = self._num_args[state_or_tran]
for model_attribute in self.by_name[state_or_tran]['attributes']:
fit_results = get_fit_result(paramfit.results, state_or_tran, model_attribute, self.verbose)
if (state_or_tran, model_attribute) in self.function_override:
function_str = self.function_override[(state_or_tran, model_attribute)]
x = AnalyticFunction(function_str, self._parameter_names, num_args)
x.fit(self.by_param, state_or_tran, model_attribute)
if x.fit_success:
param_model[state_or_tran][model_attribute] = {
'fit_result': fit_results,
'function' : x
}
elif len(fit_results.keys()):
x = analytic.function_powerset(fit_results, self._parameter_names, num_args)
x.fit(self.by_param, state_or_tran, model_attribute)
if x.fit_success:
param_model[state_or_tran][model_attribute] = {
'fit_result': fit_results,
'function' : x
}
def model_getter(name, key, **kwargs):
if 'arg' in kwargs and 'param' in kwargs:
kwargs['param'].extend(map(soft_cast_int, kwargs['arg']))
if key in param_model[name]:
param_list = kwargs['param']
param_function = param_model[name][key]['function']
if param_function.is_predictable(param_list):
return param_function.eval(param_list)
return static_model[name][key]
def info_getter(name, key):
if key in param_model[name]:
return param_model[name][key]
return None
self.cache['fitted_model_getter'] = model_getter
self.cache['fitted_info_getter'] = info_getter
return model_getter, info_getter
def to_json(self):
static_model = self.get_static()
_, param_info = self.get_fitted()
pta = PTA.from_json(self.hwmodel)
pta.update(static_model, param_info)
return pta.to_json()
def states(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'state', self.by_name.keys())))
def transitions(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))
def states_and_transitions(self):
ret = self.states()
ret.extend(self.transitions())
return ret
def parameters(self):
return self._parameter_names
def attributes(self, state_or_trans):
return self.by_name[state_or_trans]['attributes']
def assess(self, model_function):
"""
Calculate MAE, SMAPE, etc. of model_function for each by_name entry.
state/transition/... name and parameter values are fed into model_function.
The by_name entries of this PTAModel are used as ground truth and
compared with the values predicted by model_function.
If 'traces' was set when creating this object, the model quality is
also assessed on a per-trace basis.
For proper model assessments, the data used to generate model_function
and the data fed into this AnalyticModel instance must be mutually
exclusive (e.g. by performing cross validation). Otherwise,
overfitting cannot be detected.
"""
detailed_results = {}
model_energy_list = []
real_energy_list = []
model_rel_energy_list = []
model_state_energy_list = []
model_duration_list = []
real_duration_list = []
model_timeout_list = []
real_timeout_list = []
for name, elem in sorted(self.by_name.items()):
detailed_results[name] = {}
for key in elem['attributes']:
predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
measures = regression_measures(predicted_data, elem[key])
detailed_results[name][key] = measures
for trace in self.traces:
if trace['id'] not in self.ignore_trace_indexes:
for rep_id in range(len(trace['trace'][0]['offline'])):
model_energy = 0.
real_energy = 0.
model_rel_energy = 0.
model_state_energy = 0.
model_duration = 0.
real_duration = 0.
model_timeout = 0.
real_timeout = 0.
for i, trace_part in enumerate(trace['trace']):
name = trace_part['name']
prev_name = trace['trace'][i-1]['name']
isa = trace_part['isa']
if name != 'UNINITIALIZED':
param = trace_part['offline_aggregates']['param'][rep_id]
prev_param = trace['trace'][i-1]['offline_aggregates']['param'][rep_id]
power = trace_part['offline'][rep_id]['uW_mean']
duration = trace_part['offline'][rep_id]['us']
prev_duration = trace['trace'][i-1]['offline'][rep_id]['us']
real_energy += power * duration
if isa == 'state':
model_energy += model_function(name, 'power', param=param) * duration
else:
model_energy += model_function(name, 'energy', param=param)
# If i == 1, the previous state was UNINITIALIZED, for which we do not have model data
if i == 1:
model_rel_energy += model_function(name, 'energy', param=param)
else:
model_rel_energy += model_function(prev_name, 'power', param=prev_param) * (prev_duration + duration)
model_state_energy += model_function(prev_name, 'power', param=prev_param) * (prev_duration + duration)
model_rel_energy += model_function(name, 'rel_energy_prev', param=param)
real_duration += duration
model_duration += model_function(name, 'duration', param=param)
if 'plan' in trace_part and trace_part['plan']['level'] == 'epilogue':
real_timeout += trace_part['offline'][rep_id]['timeout']
model_timeout += model_function(name, 'timeout', param=param)
real_energy_list.append(real_energy)
model_energy_list.append(model_energy)
model_rel_energy_list.append(model_rel_energy)
model_state_energy_list.append(model_state_energy)
real_duration_list.append(real_duration)
model_duration_list.append(model_duration)
real_timeout_list.append(real_timeout)
model_timeout_list.append(model_timeout)
if len(self.traces):
return {
'by_name' : detailed_results,
'duration_by_trace' : regression_measures(np.array(model_duration_list), np.array(real_duration_list)),
'energy_by_trace' : regression_measures(np.array(model_energy_list), np.array(real_energy_list)),
'timeout_by_trace' : regression_measures(np.array(model_timeout_list), np.array(real_timeout_list)),
'rel_energy_by_trace' : regression_measures(np.array(model_rel_energy_list), np.array(real_energy_list)),
'state_energy_by_trace' : regression_measures(np.array(model_state_energy_list), np.array(real_energy_list)),
}
return {
'by_name' : detailed_results
}
class MIMOSA:
"""
MIMOSA log loader for DFA traces with auto-calibration.
Expects a MIMOSA log file generated via dfatool and a dfatool-generated
benchmark. A MIMOSA log consists of a series of measurements. Each measurement
gives the total charge (in pJ) and binary buzzer/trigger value during a 10µs interval.
There must be a calibration run consisting of at least two seconds with disconnected DUT,
two seconds with 1 kOhm (984 Ohm), and two seconds with 100 kOhm (99013 Ohm) resistor at
the start. The first ten seconds of data are reserved for calbiration and must not contain
measurements, as trigger/buzzer signals are ignored in this time range.
Resulting data is a list of state/transition/state/transition/... measurements.
"""
def __init__(self, voltage: float, shunt: int, verbose = True):
"""
Initialize MIMOSA loader for a specific voltage and shunt setting.
:param voltage: MIMOSA DUT supply voltage (V)
:para mshunt: MIMOSA Shunt (Ohms)
:param verbose: print notices about invalid data on STDOUT?
"""
self.voltage = voltage
self.shunt = shunt
self.verbose = verbose
self.r1 = 984 # "1k"
self.r2 = 99013 # "100k"
self.is_error = False
self.errors = list()
def charge_to_current_nocal(self, charge):
u"""
Convert charge per 10µs (in pJ) to mean currents (in µA) without accounting for calibration.
:param charge: numpy array of charges (pJ per 10µs) as returned by `load_data` or `load_file`
:returns: numpy array of mean currents (µA per 10µs)
"""
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charge * ua_step
def _load_tf(self, tf):
u"""
Load MIMOSA log data from an open `tarfile` instance.
:param tf: `tarfile` instance
:returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
"""
num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
content = f.read()
iterator = struct.iter_unpack('<I', content)
i = 0
for word in iterator:
charges[i] = (word[0] >> 4)
triggers[i] = (word[0] & 0x08) >> 3
i += 1
return charges, triggers
def load_data(self, raw_data):
u"""
Load MIMOSA log data from a MIMOSA log file passed as raw byte string
:param raw_data: MIMOSA log file, passed as raw byte string
:returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
"""
with io.BytesIO(raw_data) as data_object:
with tarfile.open(fileobj = data_object) as tf:
return self._load_tf(tf)
def load_file(self, filename):
u"""
Load MIMOSA log data from a MIMOSA log file
:param filename: MIMOSA log file
:returns: (numpy array of charges (pJ per 10µs), numpy array of triggers (0/1 int, per 10µs))
"""
with tarfile.open(filename) as tf:
return self._load_tf(tf)
def currents_nocal(self, charges):
u"""
Convert charges (pJ per 10µs) to mean currents without accounting for calibration.
:param charges: numpy array of charges (pJ per 10µs)
:returns: numpy array of currents (mean µA per 10µs)"""
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charges.astype(np.double) * ua_step
def trigger_edges(self, triggers):
"""
Return indexes of trigger edges (both 0->1 and 1->0) in log data.
Ignores the first 10 seconds, which are used for calibration and may
contain bogus triggers due to DUT resets.
:param triggers: trigger array (int, 0/1) as returned by load_data
:returns: list of int (trigger indices, e.g. [2000000, ...] means the first trigger appears in charges/currents interval 2000000 -> 20s after start of measurements. Keep in mind that each interval is 10µs long, not 1µs, so index values are not µs timestamps)
"""
trigidx = []
prevtrig = triggers[999999]
# if the first trigger is high (i.e., trigger/buzzer pin is active before the benchmark starts),
# something went wrong and are unable to determine when the first
# transition starts.
if prevtrig != 0:
self.is_error = True
self.errors.append('Unable to find start of first transition (log starts with trigger == {} != 0)'.format(prevtrig))
# if the last trigger is high (i.e., trigger/buzzer pin is active when the benchmark ends),
# it terminated in the middle of a transition -- meaning that it was not
# measured in its entirety.
if triggers[-1] != 0:
self.is_error = True
self.errors.append('Log ends during a transition'.format(prevtrig))
# the device is reset for MIMOSA calibration in the first 10s and may
# send bogus interrupts -> bogus triggers
for i in range(1000000, triggers.shape[0]):
trig = triggers[i]
if trig != prevtrig:
# Due to MIMOSA's integrate-read-reset cycle, the charge/current
# interval belonging to this trigger comes two intervals (20µs) later
trigidx.append(i+2)
prevtrig = trig
return trigidx
def calibration_edges(self, currents):
u"""
Return start/stop indexes of calibration measurements.
:param currents: uncalibrated currents as reported by MIMOSA. For best results,
it may help to use a running mean, like so:
`currents = running_mean(currents_nocal(..., 10))`
:returns: indices of calibration events in MIMOSA data:
(disconnect start, disconnect stop, R1 (1k) start, R1 (1k) stop, R2 (100k) start, R2 (100k) stop)
indices refer to charges/currents arrays, so 0 refers to the first 10µs interval, 1 to the second, and so on.
"""
r1idx = 0
r2idx = 0
ua_r1 = self.voltage / self.r1 * 1000000
# first second may be bogus
for i in range(100000, len(currents)):
if r1idx == 0 and currents[i] > ua_r1 * 0.6:
r1idx = i
elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4:
r2idx = i
# 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
# allow 5ms buffer in both directions to account for bouncing relais contacts
return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500
def calibration_function(self, charges, cal_edges):
u"""
Calculate calibration function from previously determined calibration edges.
:param charges: raw charges from MIMOSA
:param cal_edges: calibration edges as returned by calibration_edges
:returns: (calibration_function, calibration_data):
calibration_function -- charge in pJ (float) -> current in uA (float).
Converts the amount of charge in a 10 µs interval to the
mean current during the same interval.
calibration_data -- dict containing the following keys:
edges -- calibration points in the log file, in µs
offset -- ...
offset2 -- ...
slope_low -- ...
slope_high -- ...
add_low -- ...
add_high -- ..
r0_err_uW -- mean error of uncalibrated data at "∞ Ohm" in µW
r0_std_uW -- standard deviation of uncalibrated data at "∞ Ohm" in µW
r1_err_uW -- mean error of uncalibrated data at 1 kOhm
r1_std_uW -- stddev at 1 kOhm
r2_err_uW -- mean error at 100 kOhm
r2_std_uW -- stddev at 100 kOhm
"""
dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
if dis_start < 0:
dis_start = 0
chg_r0 = charges[dis_start:dis_end]
chg_r1 = charges[r1_start:r1_end]
chg_r2 = charges[r2_start:r2_end]
cal_0_mean = np.mean(chg_r0)
cal_r1_mean = np.mean(chg_r1)
cal_r2_mean = np.mean(chg_r2)
ua_r1 = self.voltage / self.r1 * 1000000
ua_r2 = self.voltage / self.r2 * 1000000
if cal_r2_mean > cal_0_mean:
b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
else:
vprint(self.verbose, '[W] 0 uA == %.f uA during calibration' % (ua_r2))
b_lower = 0
b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
a_lower = -b_lower * cal_0_mean
a_upper = -b_upper * cal_r2_mean
if self.shunt == 680:
# R1 current is higher than shunt range -> only use R2 for calibration
def calfunc(charge):
if charge < cal_0_mean:
return 0
else:
return charge * b_lower + a_lower
else:
def calfunc(charge):
if charge < cal_0_mean:
return 0
if charge <= cal_r2_mean:
return charge * b_lower + a_lower
else:
return charge * b_upper + a_upper + ua_r2
caldata = {
'edges' : [x * 10 for x in cal_edges],
'offset': cal_0_mean,
'offset2' : cal_r2_mean,
'slope_low' : b_lower,
'slope_high' : b_upper,
'add_low' : a_lower,
'add_high' : a_upper,
'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage,
'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage,
'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage,
'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage,
}
#print("if charge < %f : return 0" % cal_0_mean)
#print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
#print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
return calfunc, caldata
"""
def calcgrad(self, currents, threshold):
grad = np.gradient(running_mean(currents * self.voltage, 10))
# len(grad) == len(currents) - 9
subst = []
lastgrad = 0
for i in range(len(grad)):
# minimum substate duration: 10ms
if np.abs(grad[i]) > threshold and i - lastgrad > 50:
# account for skew introduced by running_mean and current
# ramp slope (parasitic capacitors etc.)
subst.append(i+10)
lastgrad = i
if lastgrad != i:
subst.append(i+10)
return subst
# TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
# Sache nach noetiger threshold. postprocessing mit
# "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
# ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
# TODO bei substates / index foo den offset durch running_mean beachten
# TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
# uebergaenge dadurch?
def gradfoo(self, currents):
gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
gradmin = np.min(gradients)
gradmax = np.max(gradients)
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
num_substates = 2
while len(gradidx) != num_substates:
if gradmax - gradmin < 0.1:
# We did our best
return threshold, gradidx
if len(gradidx) > num_substates:
gradmin = threshold
else:
gradmax = threshold
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
return threshold, gradidx
"""
def analyze_states(self, charges, trigidx, ua_func):
u"""
Split log data into states and transitions and return duration, energy, and mean power for each element.
:param charges: raw charges (each element describes the charge in pJ transferred during 10 µs)
:param trigidx: "charges" indexes corresponding to a trigger edge, see `trigger_edges`
:param ua_func: charge(pJ) -> current(µA) function as returned by `calibration_function`
:returns: list of states and transitions, both starting andending with a state.
Each element is a dict containing:
* `isa`: 'state' or 'transition'
* `clip_rate`: range(0..1) Anteil an Clipping im Energieverbrauch
* `raw_mean`: Mittelwert der Rohwerte
* `raw_std`: Standardabweichung der Rohwerte
* `uW_mean`: Mittelwert der (kalibrierten) Leistungsaufnahme
* `uW_std`: Standardabweichung der (kalibrierten) Leistungsaufnahme
* `us`: Dauer
if isa == 'transition, it also contains:
* `timeout`: Dauer des vorherigen Zustands
* `uW_mean_delta_prev`: Differenz zwischen uW_mean und uW_mean des vorherigen Zustands
* `uW_mean_delta_next`: Differenz zwischen uW_mean und uW_mean des Folgezustands
"""
previdx = 0
is_state = True
iterdata = []
# The last state (between the last transition and end of file) may also
# be important. Pretend it ends when the log ends.
trigger_indices = trigidx.copy()
trigger_indices.append(len(charges))
for idx in trigger_indices:
range_raw = charges[previdx:idx]
range_ua = ua_func(range_raw)
substates = {}
if previdx != 0 and idx - previdx > 200:
thr, subst = 0, [] #self.gradfoo(range_ua)
if len(subst):
statelist = []
prevsubidx = 0
for subidx in subst:
statelist.append({
'duration': (subidx - prevsubidx) * 10,
'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage),
'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage),
})
prevsubidx = subidx
substates = {
'threshold' : thr,
'states' : statelist,
}
isa = 'state'
if not is_state:
isa = 'transition'
data = {
'isa': isa,
'clip_rate' : np.mean(range_raw == 65535),
'raw_mean': np.mean(range_raw),
'raw_std' : np.std(range_raw),
'uW_mean' : np.mean(range_ua * self.voltage),
'uW_std' : np.std(range_ua * self.voltage),
'us' : (idx - previdx) * 10,
}
if 'states' in substates:
data['substates'] = substates
ssum = np.sum(list(map(lambda x : x['duration'], substates['states'])))
if ssum != data['us']:
vprint(self.verbose, "ERR: duration %d vs %d" % (data['us'], ssum))
if isa == 'transition':
# subtract average power of previous state
# (that is, the state from which this transition originates)
data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
# placeholder to avoid extra cases in the analysis
data['uW_mean_delta_next'] = data['uW_mean']
data['timeout'] = iterdata[-1]['us']
elif len(iterdata) > 0:
# subtract average power of next state
# (the state into which this transition leads)
iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']
iterdata.append(data)
previdx = idx
is_state = not is_state
return iterdata
|