1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
|
#!/usr/bin/env python3
import csv
from itertools import chain, combinations
import io
import json
import numpy as np
import os
import re
from scipy import optimize
from gplearn.genetic import SymbolicRegressor
from sklearn.metrics import r2_score
import struct
import sys
import tarfile
from multiprocessing import Pool
arg_support_enabled = True
def running_mean(x, N):
cumsum = np.cumsum(np.insert(x, 0, 0))
return (cumsum[N:] - cumsum[:-N]) / N
def is_numeric(n):
if n == None:
return False
try:
int(n)
return True
except ValueError:
return False
def soft_cast_int(n):
if n == None or n == '':
return None
try:
return int(n)
except ValueError:
return n
def float_or_nan(n):
if n == None:
return np.nan
try:
return float(n)
except ValueError:
return np.nan
def vprint(verbose, string):
if verbose:
print(string)
def _elem_param_and_arg_list(elem):
param_dict = elem['parameter']
paramkeys = sorted(param_dict.keys())
paramvalue = [soft_cast_int(param_dict[x]) for x in paramkeys]
if arg_support_enabled and 'args' in elem:
paramvalue.extend(map(soft_cast_int, elem['args']))
return paramvalue
def _arg_name(arg_index):
return '~arg{:02}'.format(arg_index)
def append_if_set(aggregate, data, key):
if key in data:
aggregate.append(data[key])
def mean_or_none(arr):
if len(arr):
return np.mean(arr)
return -1
def aggregate_measures(aggregate, actual):
aggregate_array = np.array([aggregate] * len(actual))
return regression_measures(aggregate_array, np.array(actual))
def regression_measures(predicted, actual):
if type(predicted) != np.ndarray:
raise ValueError('first arg must be ndarray, is {}'.format(type(predicted)))
if type(actual) != np.ndarray:
raise ValueError('second arg must be ndarray, is {}'.format(type(actual)))
deviations = predicted - actual
mean = np.mean(actual)
if len(deviations) == 0:
return {}
measures = {
'mae' : np.mean(np.abs(deviations), dtype=np.float64),
'msd' : np.mean(deviations**2, dtype=np.float64),
'rmsd' : np.sqrt(np.mean(deviations**2), dtype=np.float64),
'ssr' : np.sum(deviations**2, dtype=np.float64),
'rsq' : r2_score(actual, predicted),
}
#rsq_quotient = np.sum((actual - mean)**2, dtype=np.float64) * np.sum((predicted - mean)**2, dtype=np.float64)
if np.all(actual != 0):
measures['mape'] = np.mean(np.abs(deviations / actual)) * 100 # bad measure
if np.all(np.abs(predicted) + np.abs(actual) != 0):
measures['smape'] = np.mean(np.abs(deviations) / (( np.abs(predicted) + np.abs(actual)) / 2 )) * 100
#if np.all(rsq_quotient != 0):
# measures['rsq'] = (np.sum((actual - mean) * (predicted - mean), dtype=np.float64)**2) / rsq_quotient
return measures
def powerset(iterable):
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
class Keysight:
def __init__(self):
pass
def load_data(self, filename):
with open(filename) as f:
for i, l in enumerate(f):
pass
timestamps = np.ndarray((i-3), dtype=float)
currents = np.ndarray((i-3), dtype=float)
# basically seek back to start
with open(filename) as f:
for _ in range(4):
next(f)
reader = csv.reader(f, delimiter=',')
for i, row in enumerate(reader):
timestamps[i] = float(row[0])
currents[i] = float(row[2]) * -1
return timestamps, currents
def _xv_partitions_kfold(length, num_slices):
pairs = []
indexes = np.arange(length)
for i in range(0, num_slices):
training = np.delete(indexes, slice(i, None, num_slices))
validation = indexes[i::num_slices]
pairs.append((training, validation))
return pairs
def _xv_partitions_montecarlo(length, num_slices):
pairs = []
for i in range(0, num_slices):
shuffled = np.random.permutation(np.arange(length))
border = int(length * float(2) / 3)
training = shuffled[:border]
validation = shuffled[border:]
pairs.append((training, validation))
return pairs
class CrossValidation:
def __init__(self, em, num_partitions):
self._em = em
self._num_partitions = num_partitions
x = EnergyModel.from_model(em.by_name, em._parameter_names)
def _preprocess_measurement(measurement):
setup = measurement['setup']
mim = MIMOSA(float(setup['mimosa_voltage']), int(setup['mimosa_shunt']))
charges, triggers = mim.load_data(measurement['content'])
trigidx = mim.trigger_edges(triggers)
triggers = []
cal_edges = mim.calibration_edges(running_mean(mim.currents_nocal(charges[0:trigidx[0]]), 10))
calfunc, caldata = mim.calibration_function(charges, cal_edges)
vcalfunc = np.vectorize(calfunc, otypes=[np.float64])
processed_data = {
'fileno' : measurement['fileno'],
'info' : measurement['info'],
'triggers' : len(trigidx),
'first_trig' : trigidx[0] * 10,
'calibration' : caldata,
'trace' : mim.analyze_states(charges, trigidx, vcalfunc)
}
return processed_data
class RawData:
def __init__(self, filenames):
self.filenames = filenames.copy()
self.traces_by_fileno = []
self.setup_by_fileno = []
self.version = 0
self.preprocessed = False
self._parameter_names = None
def _state_is_too_short(self, online, offline, state_duration, next_transition):
# We cannot control when an interrupt causes a state to be left
if next_transition['plan']['level'] == 'epilogue':
return False
# Note: state_duration is stored as ms, not us
return offline['us'] < state_duration * 500
def _state_is_too_long(self, online, offline, state_duration, prev_transition):
# If the previous state was left by an interrupt, we may have some
# waiting time left over. So it's okay if the current state is longer
# than expected.
if prev_transition['plan']['level'] == 'epilogue':
return False
# state_duration is stored as ms, not us
return offline['us'] > state_duration * 1500
def _measurement_is_valid(self, processed_data):
setup = self.setup_by_fileno[processed_data['fileno']]
traces = self.traces_by_fileno[processed_data['fileno']]
state_duration = setup['state_duration']
# Check trigger count
sched_trigger_count = 0
for run in traces:
sched_trigger_count += len(run['trace'])
if sched_trigger_count != processed_data['triggers']:
processed_data['error'] = 'got {got:d} trigger edges, expected {exp:d}'.format(
got = processed_data['triggers'],
exp = sched_trigger_count
)
return False
# Check state durations. Very short or long states can indicate a
# missed trigger signal which wasn't detected due to duplicate
# triggers elsewhere
online_datapoints = []
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = processed_data['trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if self._parameter_names == None:
self._parameter_names = sorted(online_trace_part['parameter'].keys())
if sorted(online_trace_part['parameter'].keys()) != self._parameter_names:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) has inconsistent paramete set: should be {param_want:s}, is {param_is:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
param_want = self._parameter_names,
param_is = sorted(online_trace_part['parameter'].keys())
)
if online_trace_part['isa'] != offline_trace_part['isa']:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) claims to be {off_isa:s}, but should be {on_isa:s}'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
off_isa = offline_trace_part['isa'],
on_isa = online_trace_part['isa'])
return False
# Clipping in UNINITIALIZED (offline_idx == 0) can happen during
# calibration and is handled by MIMOSA
if offline_idx != 0 and offline_trace_part['clip_rate'] != 0:
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) was clipping {clip:f}% of the time'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
clip = offline_trace_part['clip_rate'] * 100,
)
return False
if online_trace_part['isa'] == 'state' and online_trace_part['name'] != 'UNINITIALIZED':
online_prev_transition = traces[online_run_idx]['trace'][online_trace_part_idx-1]
online_next_transition = traces[online_run_idx]['trace'][online_trace_part_idx+1]
try:
if self._state_is_too_short(online_trace_part, offline_trace_part, state_duration, online_next_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too short (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
if self._state_is_too_long(online_trace_part, offline_trace_part, state_duration, online_prev_transition):
processed_data['error'] = 'Offline #{off_idx:d} (online {on_name:s} @ {on_idx:d}/{on_sub:d}) is too long (duration = {dur:d} us)'.format(
off_idx = offline_idx, on_idx = online_run_idx,
on_sub = online_trace_part_idx,
on_name = online_trace_part['name'],
dur = offline_trace_part['us'])
return False
except KeyError:
pass
# TODO es gibt next_transitions ohne 'plan'
return True
def _merge_measurement_into_online_data(self, measurement):
online_datapoints = []
traces = self.traces_by_fileno[measurement['fileno']]
for run_idx, run in enumerate(traces):
for trace_part_idx in range(len(run['trace'])):
online_datapoints.append((run_idx, trace_part_idx))
for offline_idx, online_ref in enumerate(online_datapoints):
online_run_idx, online_trace_part_idx = online_ref
offline_trace_part = measurement['trace'][offline_idx]
online_trace_part = traces[online_run_idx]['trace'][online_trace_part_idx]
if not 'offline' in online_trace_part:
online_trace_part['offline'] = [offline_trace_part]
else:
online_trace_part['offline'].append(offline_trace_part)
paramkeys = sorted(online_trace_part['parameter'].keys())
paramvalue = [soft_cast_int(online_trace_part['parameter'][x]) for x in paramkeys]
# NB: Unscheduled transitions do not have an 'args' field set.
# However, they should only be caused by interrupts, and
# interrupts don't have args anyways.
if arg_support_enabled and 'args' in online_trace_part:
paramvalue.extend(map(soft_cast_int, online_trace_part['args']))
if not 'offline_aggregates' in online_trace_part:
online_trace_part['offline_attributes'] = ['power', 'duration', 'energy']
online_trace_part['offline_aggregates'] = {
'power' : [],
'duration' : [],
'power_std' : [],
'energy' : [],
'paramkeys' : [],
'param': [],
}
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_attributes'].extend(['rel_energy_prev', 'rel_energy_next', 'timeout'])
online_trace_part['offline_aggregates']['rel_energy_prev'] = []
online_trace_part['offline_aggregates']['rel_energy_next'] = []
online_trace_part['offline_aggregates']['timeout'] = []
# Note: All state/transitions are 20us "too long" due to injected
# active wait states. These are needed to work around MIMOSA's
# relatively low sample rate of 100 kHz (10us) and removed here.
online_trace_part['offline_aggregates']['power'].append(
offline_trace_part['uW_mean'])
online_trace_part['offline_aggregates']['duration'].append(
offline_trace_part['us'] - 20)
online_trace_part['offline_aggregates']['power_std'].append(
offline_trace_part['uW_std'])
online_trace_part['offline_aggregates']['energy'].append(
offline_trace_part['uW_mean'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['paramkeys'].append(paramkeys)
online_trace_part['offline_aggregates']['param'].append(paramvalue)
if online_trace_part['isa'] == 'transition':
online_trace_part['offline_aggregates']['rel_energy_prev'].append(
offline_trace_part['uW_mean_delta_prev'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['rel_energy_next'].append(
offline_trace_part['uW_mean_delta_next'] * (offline_trace_part['us'] - 20))
online_trace_part['offline_aggregates']['timeout'].append(
offline_trace_part['timeout'])
def _concatenate_analyzed_traces(self):
self.traces = []
for trace in self.traces_by_fileno:
self.traces.extend(trace)
def get_preprocessed_data(self, verbose = True):
self.verbose = verbose
if self.preprocessed:
return self.traces
if self.version == 0:
self.preprocess_0()
self.preprocessed = True
return self.traces
# Loads raw MIMOSA data and turns it into measurements which are ready to
# be analyzed.
def preprocess_0(self):
mim_files = []
for i, filename in enumerate(self.filenames):
with tarfile.open(filename) as tf:
self.setup_by_fileno.append(json.load(tf.extractfile('setup.json')))
self.traces_by_fileno.append(json.load(tf.extractfile('src/apps/DriverEval/DriverLog.json')))
for member in tf.getmembers():
_, extension = os.path.splitext(member.name)
if extension == '.mim':
mim_files.append({
'content' : tf.extractfile(member).read(),
'fileno' : i,
'info' : member,
'setup' : self.setup_by_fileno[i],
'traces' : self.traces_by_fileno[i],
})
with Pool() as pool:
measurements = pool.map(_preprocess_measurement, mim_files)
num_valid = 0
for measurement in measurements:
if self._measurement_is_valid(measurement):
self._merge_measurement_into_online_data(measurement)
num_valid += 1
else:
vprint(self.verbose, '[W] Skipping {ar:s}/{m:s}: {e:s}'.format(
ar = self.filenames[measurement['fileno']],
m = measurement['info'].name,
e = measurement['error']))
vprint(self.verbose, '[I] {num_valid:d}/{num_total:d} measurements are valid'.format(
num_valid = num_valid,
num_total = len(measurements)))
self._concatenate_analyzed_traces()
self.preprocessing_stats = {
'num_runs' : len(measurements),
'num_valid' : num_valid
}
def _param_slice_eq(a, b, index):
if (*a[1][:index], *a[1][index+1:]) == (*b[1][:index], *b[1][index+1:]) and a[0] == b[0]:
return True
return False
class ParamFunction:
def __init__(self, param_function, validation_function, num_vars):
self._param_function = param_function
self._validation_function = validation_function
self._num_variables = num_vars
def is_valid(self, arg):
return self._validation_function(arg)
def eval(self, param, args):
return self._param_function(param, args)
def error_function(self, P, X, y):
return self._param_function(P, X) - y
class AnalyticFunction:
def __init__(self, function_str, num_vars, parameters, num_args, verbose = True):
self._parameter_names = parameters
self._num_args = num_args
self._model_str = function_str
rawfunction = function_str
self._dependson = [False] * (len(parameters) + num_args)
self.fit_success = False
self.verbose = verbose
for i in range(len(parameters)):
if rawfunction.find('parameter({})'.format(parameters[i])) >= 0:
self._dependson[i] = True
rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'model_param[{:d}]'.format(i))
for i in range(0, num_args):
if rawfunction.find('function_arg({:d})'.format(i)) >= 0:
self._dependson[len(parameters) + i] = True
rawfunction = rawfunction.replace('function_arg({:d})'.format(i), 'model_param[{:d}]'.format(len(parameters) + i))
for i in range(num_vars):
rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'reg_param[{:d}]'.format(i))
self._function_str = rawfunction
self._function = eval('lambda reg_param, model_param: ' + rawfunction);
self._regression_args = list(np.ones((num_vars)))
def _get_fit_data(self, by_param, state_or_tran, model_attribute):
dimension = len(self._parameter_names) + self._num_args
X = [[] for i in range(dimension)]
Y = []
num_valid = 0
num_total = 0
for key, val in by_param.items():
if key[0] == state_or_tran and len(key[1]) == dimension:
valid = True
num_total += 1
for i in range(dimension):
if self._dependson[i] and not is_numeric(key[1][i]):
valid = False
if valid:
num_valid += 1
Y.extend(val[model_attribute])
for i in range(dimension):
if self._dependson[i]:
X[i].extend([float(key[1][i])] * len(val[model_attribute]))
else:
X[i].extend([np.nan] * len(val[model_attribute]))
elif key[0] == state_or_tran and len(key[1]) != dimension:
vprint(self.verbose, '[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.'.format(state_or_tran, model_attribute, len(key[1]), dimension))
X = np.array(X)
Y = np.array(Y)
return X, Y, num_valid, num_total
def fit(self, by_param, state_or_tran, model_attribute):
X, Y, num_valid, num_total = self._get_fit_data(by_param, state_or_tran, model_attribute)
if num_valid > 2:
error_function = lambda P, X, y: self._function(P, X) - y
try:
res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15)
except ValueError as err:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, err, self._model_str))
return
if res.status > 0:
self._regression_args = res.x
self.fit_success = True
else:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, res.message, self._model_str))
else:
vprint(self.verbose, '[W] Insufficient amount of valid parameter keys, cannot fit {}/{}'.format(state_or_tran, model_attribute))
def is_predictable(self, param_list):
for i, param in enumerate(param_list):
if self._dependson[i] and not is_numeric(param):
return False
return True
def eval(self, param_list):
return self._function(self._regression_args, param_list)
class analytic:
_num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
_function_map = {
'linear' : lambda x: x,
'logarithmic' : np.log,
'logarithmic1' : lambda x: np.log(x + 1),
'exponential' : np.exp,
'square' : lambda x : x ** 2,
'fractional' : lambda x : 1 / x,
'sqrt' : np.sqrt,
'num0_8' : _num0_8,
'num0_16' : _num0_16,
'num1' : _num1,
}
def functions():
functions = {
'linear' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param,
lambda model_param: True,
2
),
'logarithmic' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param),
lambda model_param: model_param > 0,
2
),
'logarithmic1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param + 1),
lambda model_param: model_param > -1,
2
),
'exponential' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.exp(model_param),
lambda model_param: model_param <= 64,
2
),
#'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
'square' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param ** 2,
lambda model_param: True,
2
),
'fractional' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param,
lambda model_param: model_param != 0,
2
),
'sqrt' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.sqrt(model_param),
lambda model_param: model_param >= 0,
2
),
'num0_8' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_8(model_param),
lambda model_param: True,
2
),
'num0_16' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_16(model_param),
lambda model_param: True,
2
),
'num1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num1(model_param),
lambda model_param: True,
2
),
}
return functions
def _fmap(reference_type, reference_name, function_type):
ref_str = '{}({})'.format(reference_type,reference_name)
if function_type == 'linear':
return ref_str
if function_type == 'logarithmic':
return 'np.log({})'.format(ref_str)
if function_type == 'logarithmic1':
return 'np.log({} + 1)'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'square':
return '({})**2'.format(ref_str)
if function_type == 'fractional':
return '1/({})'.format(ref_str)
if function_type == 'sqrt':
return 'np.sqrt({})'.format(ref_str)
return 'analytic._{}({})'.format(function_type, ref_str)
def function_powerset(function_descriptions, parameter_names, num_args):
buf = '0'
arg_idx = 0
for combination in powerset(function_descriptions.items()):
buf += ' + regression_arg({:d})'.format(arg_idx)
arg_idx += 1
for function_item in combination:
if arg_support_enabled and is_numeric(function_item[0]):
buf += ' * {}'.format(analytic._fmap('function_arg', function_item[0], function_item[1]['best']))
else:
buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best']))
return AnalyticFunction(buf, arg_idx, parameter_names, num_args)
#def function_powerset(function_descriptions):
# function_buffer = lambda param, arg: 0
# param_idx = 0
# for combination in powerset(function_descriptions):
# new_function = lambda param, arg: param[param_idx]
# param_idx += 1
# for function_name in combination:
# new_function = lambda param, arg: new_function(param, arg) * analytic._function_map[function_name](arg)
# new_function = lambda param, arg: param[param_idx] *
# function_buffer = lambda param, arg: function_buffer(param, arg) +
def _try_fits_parallel(arg):
return {
'key' : arg['key'],
'result' : _try_fits(*arg['args'])
}
def _try_fits(by_param, state_or_tran, model_attribute, param_index):
functions = analytic.functions()
for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
# We might remove elements from 'functions' while iterating over
# its keys. A generator will not allow this, so we need to
# convert to a list.
function_names = list(functions.keys())
for function_name in function_names:
function_object = functions[function_name]
if is_numeric(param_key[1][param_index]) and not function_object.is_valid(param_key[1][param_index]):
functions.pop(function_name, None)
raw_results = {}
ref_results = {
'mean' : [],
'median' : []
}
results = {}
for param_key in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
X = []
Y = []
num_valid = 0
num_total = 0
for k, v in by_param.items():
if _param_slice_eq(k, param_key, param_index):
num_total += 1
if is_numeric(k[1][param_index]):
num_valid += 1
X.extend([float(k[1][param_index])] * len(v[model_attribute]))
Y.extend(v[model_attribute])
if num_valid > 2:
X = np.array(X)
Y = np.array(Y)
for function_name, param_function in functions.items():
raw_results[function_name] = {}
error_function = param_function.error_function
res = optimize.least_squares(error_function, [0, 1], args=(X, Y), xtol=2e-15)
measures = regression_measures(param_function.eval(res.x, X), Y)
for measure, error_rate in measures.items():
if not measure in raw_results[function_name]:
raw_results[function_name][measure] = []
raw_results[function_name][measure].append(error_rate)
#print(function_name, res, measures)
mean_measures = aggregate_measures(np.mean(Y), Y)
ref_results['mean'].append(mean_measures['rmsd'])
median_measures = aggregate_measures(np.median(Y), Y)
ref_results['median'].append(median_measures['rmsd'])
best_fit_val = np.inf
best_fit_name = None
for function_name, result in raw_results.items():
if len(result) > 0:
results[function_name] = {}
for measure in result.keys():
results[function_name][measure] = np.mean(result[measure])
rmsd = results[function_name]['rmsd']
if rmsd < best_fit_val:
best_fit_val = rmsd
best_fit_name = function_name
return {
'best' : best_fit_name,
'best_rmsd' : best_fit_val,
'mean_rmsd' : np.mean(ref_results['mean']),
'median_rmsd' : np.mean(ref_results['median']),
'results' : results
}
def _compute_param_statistics_parallel(args):
return {
'state_or_trans' : args['state_or_trans'],
'key' : args['key'],
'result' : _compute_param_statistics(*args['args'])
}
def _compute_param_statistics(by_name, by_param, parameter_names, num_args, state_or_trans, key):
ret = {
'std_static' : np.std(by_name[state_or_trans][key]),
'std_param_lut' : np.mean([np.std(by_param[x][key]) for x in by_param.keys() if x[0] == state_or_trans]),
'std_by_param' : {},
'std_by_arg' : [],
}
for param_idx, param in enumerate(parameter_names):
ret['std_by_param'][param] = _mean_std_by_param(by_param, state_or_trans, key, param_idx)
if arg_support_enabled and state_or_trans in num_args:
for arg_index in range(num_args[state_or_trans]):
ret['std_by_arg'].append(_mean_std_by_param(by_param, state_or_trans, key, len(parameter_names) + arg_index))
return ret
# returns the mean standard deviation of all measurements of 'what'
# (e.g. power consumption or timeout) for state/transition 'name' where
# parameter 'index' is dynamic and all other parameters are fixed.
# I.e., if parameters are a, b, c ∈ {1,2,3} and 'index' corresponds to b', then
# this function returns the mean of the standard deviations of (a=1, b=*, c=1),
# (a=1, b=*, c=2), and so on
def _mean_std_by_param(by_param, state_or_tran, key, param_index):
partitions = []
for param_value in filter(lambda x: x[0] == state_or_tran, by_param.keys()):
param_partition = []
for k, v in by_param.items():
if _param_slice_eq(k, param_value, param_index):
param_partition.extend(v[key])
if len(param_partition):
partitions.append(param_partition)
else:
print('[W] parameter value partition for {} is empty'.format(param_value))
return np.mean([np.std(partition) for partition in partitions])
class EnergyModel:
def __init__(self, preprocessed_data, ignore_trace_indexes = None, discard_outliers = None, function_override = {}, verbose = True):
self.traces = preprocessed_data
self.by_name = {}
self.by_param = {}
self.by_trace = {}
self.stats = {}
np.seterr('raise')
self._parameter_names = sorted(self.traces[0]['trace'][0]['parameter'].keys())
self._num_args = {}
self._outlier_threshold = discard_outliers
self.function_override = function_override
self.verbose = verbose
if discard_outliers != None:
self._compute_outlier_stats(ignore_trace_indexes, discard_outliers)
for run in self.traces:
if ignore_trace_indexes == None or int(run['id']) not in ignore_trace_indexes:
for i, elem in enumerate(run['trace']):
if elem['name'] != 'UNINITIALIZED':
self._load_run_elem(i, elem)
if elem['isa'] == 'transition' and not elem['name'] in self._num_args and 'args' in elem:
self._num_args[elem['name']] = len(elem['args'])
self._aggregate_to_ndarray(self.by_name)
self._compute_all_param_statistics()
def _compute_outlier_stats(self, ignore_trace_indexes, threshold):
tmp_by_param = {}
self.median_by_param = {}
for run in self.traces:
if ignore_trace_indexes == None or int(run['id']) not in ignore_trace_indexes:
for i, elem in enumerate(run['trace']):
key = (elem['name'], tuple(_elem_param_and_arg_list(elem)))
if not key in tmp_by_param:
tmp_by_param[key] = {}
for attribute in elem['offline_attributes']:
tmp_by_param[key][attribute] = []
for attribute in elem['offline_attributes']:
tmp_by_param[key][attribute].extend(elem['offline_aggregates'][attribute])
for key, elem in tmp_by_param.items():
if not key in self.median_by_param:
self.median_by_param[key] = {}
for attribute in tmp_by_param[key].keys():
self.median_by_param[key][attribute] = np.median(tmp_by_param[key][attribute])
def _compute_all_param_statistics(self):
queue = []
for state_or_trans in self.by_name.keys():
self.stats[state_or_trans] = {}
for key in self.by_name[state_or_trans]['attributes']:
if key in self.by_name[state_or_trans]:
self.stats[state_or_trans][key] = _compute_param_statistics(self.by_name, self.by_param, self._parameter_names, self._num_args, state_or_trans, key)
#queue.append({
# 'state_or_trans' : state_or_trans,
# 'key' : key,
# 'args' : [self.by_name, self.by_param, self._parameter_names, self._num_args, state_or_trans, key]
#})
# IPC overhead for by_name/by_param (un)pickling is higher than
# multiprocessing speedup... so let's not do this.
#with Pool() as pool:
# results = pool.map(_compute_param_statistics_parallel, queue)
#for ret in results:
# self.stats[ret['state_or_trans']][ret['key']] = ret['result']
@classmethod
def from_model(self, model_data, parameter_names):
self.by_name = {}
self.by_param = {}
self.stats = {}
np.seterr('raise')
self._parameter_names = parameter_names
for state_or_tran, values in model_data.items():
for elem in values:
self._load_agg_elem(state_or_tran, elem)
#if elem['isa'] == 'transition' and not state_or_tran in self._num_args and 'args' in elem:
# self._num_args = len(elem['args'])
self._aggregate_to_ndarray(self.by_name)
self._compute_all_param_statistics()
def _aggregate_to_ndarray(self, aggregate):
for elem in aggregate.values():
for key in elem['attributes']:
elem[key] = np.array(elem[key])
def _prune_outliers(self, key, attribute, data):
if self._outlier_threshold == None:
return data
median = self.median_by_param[key][attribute]
if np.median(np.abs(data - median)) == 0:
return data
pruned_data = list(filter(lambda x: np.abs(0.6745 * (x - median) / np.median(np.abs(data - median))) > self._outlier_threshold, data ))
if len(pruned_data):
vprint(self.verbose, '[I] Pruned outliers from ({}) {}: {}'.format(key, attribute, pruned_data))
data = list(filter(lambda x: np.abs(0.6745 * (x - median) / np.median(np.abs(data - median))) <= self._outlier_threshold, data ))
return data
def _add_data_to_aggregate(self, aggregate, key, element):
if not key in aggregate:
aggregate[key] = {
'isa' : element['isa']
}
for datakey in element['offline_aggregates'].keys():
aggregate[key][datakey] = []
if element['isa'] == 'state':
aggregate[key]['attributes'] = ['power']
else:
aggregate[key]['attributes'] = ['duration', 'energy', 'rel_energy_prev', 'rel_energy_next']
if element['plan']['level'] == 'epilogue':
aggregate[key]['attributes'].insert(0, 'timeout')
for datakey, dataval in element['offline_aggregates'].items():
if datakey in element['offline_attributes']:
dataval = self._prune_outliers((element['name'], tuple(_elem_param_and_arg_list(element))), datakey, dataval)
aggregate[key][datakey].extend(dataval)
def _load_agg_elem(self, name, elem):
self._add_data_to_aggregate(self.by_name, name, elem)
self._add_data_to_aggregate(self.by_param, (name, tuple(elem['param'])), elem)
def _load_run_elem(self, i, elem):
self._add_data_to_aggregate(self.by_name, elem['name'], elem)
self._add_data_to_aggregate(self.by_param, (elem['name'], tuple(_elem_param_and_arg_list(elem))), elem)
def generic_param_independence_ratio(self, state_or_trans, key):
statistics = self.stats[state_or_trans][key]
if statistics['std_static'] == 0:
return 0
return statistics['std_param_lut'] / statistics['std_static']
def generic_param_dependence_ratio(self, state_or_trans, key):
return 1 - self.generic_param_independence_ratio(state_or_trans, key)
def param_independence_ratio(self, state_or_trans, key, param):
statistics = self.stats[state_or_trans][key]
if statistics['std_by_param'][param] == 0:
return 0
return statistics['std_param_lut'] / statistics['std_by_param'][param]
def param_dependence_ratio(self, state_or_trans, key, param):
return 1 - self.param_independence_ratio(state_or_trans, key, param)
def arg_independence_ratio(self, state_or_trans, key, arg_index):
statistics = self.stats[state_or_trans][key]
if statistics['std_by_arg'][arg_index] == 0:
return 0
return statistics['std_param_lut'] / statistics['std_by_arg'][arg_index]
def arg_dependence_ratio(self, state_or_trans, key, arg_index):
return 1 - self.arg_independence_ratio(state_or_trans, key, arg_index)
def _get_model_from_dict(self, model_dict, model_function):
model = {}
for name, elem in model_dict.items():
model[name] = {}
for key in elem['attributes']:
try:
model[name][key] = model_function(elem[key])
except RuntimeWarning:
vprint(self.verbose, '[W] Got no data for {} {}'.format(name, key))
except FloatingPointError as fpe:
vprint(self.verbose, '[W] Got no data for {} {}: {}'.format(name, key, fpe))
return model
def get_static(self):
static_model = self._get_model_from_dict(self.by_name, np.median)
def static_median_getter(name, key, **kwargs):
return static_model[name][key]
return static_median_getter
def get_static_using_mean(self):
static_model = self._get_model_from_dict(self.by_name, np.mean)
def static_mean_getter(name, key, **kwargs):
return static_model[name][key]
return static_mean_getter
def get_param_lut(self):
lut_model = self._get_model_from_dict(self.by_param, np.median)
def lut_median_getter(name, key, param, arg = [], **kwargs):
param.extend(map(soft_cast_int, arg))
return lut_model[(name, tuple(param))][key]
return lut_median_getter
def get_param_analytic(self):
static_model = self._get_model_from_dict(self.by_name, np.median)
def get_fitted(self):
static_model = self._get_model_from_dict(self.by_name, np.median)
param_model = dict([[state_or_tran, {}] for state_or_tran in self.by_name.keys()])
fit_queue = []
for state_or_tran in self.by_name.keys():
param_keys = filter(lambda k: k[0] == state_or_tran, self.by_param.keys())
param_subdict = dict(map(lambda k: [k, self.by_param[k]], param_keys))
for model_attribute in self.by_name[state_or_tran]['attributes']:
fit_results = {}
for parameter_index, parameter_name in enumerate(self._parameter_names):
if self.param_dependence_ratio(state_or_tran, model_attribute, parameter_name) > 0.5:
fit_queue.append({
'key' : [state_or_tran, model_attribute, parameter_name],
'args' : [self.by_param, state_or_tran, model_attribute, parameter_index]
})
#fit_results[parameter_name] = _try_fits(self.by_param, state_or_tran, model_attribute, parameter_index)
#print('{} {} is {}'.format(state_or_tran, parameter_name, fit_results[parameter_name]['best']))
if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
for arg_index in range(self._num_args[state_or_tran]):
if self.arg_dependence_ratio(state_or_tran, model_attribute, arg_index) > 0.5:
fit_queue.append({
'key' : [state_or_tran, model_attribute, arg_index],
'args' : [param_subdict, state_or_tran, model_attribute, len(self._parameter_names) + arg_index]
})
#fit_results[_arg_name(arg_index)] = _try_fits(self.by_param, state_or_tran, model_attribute, len(self._parameter_names) + arg_index)
#if 'args' in self.by_name[state_or_tran]:
# for i, arg in range(len(self.by_name
with Pool() as pool:
all_fit_results = pool.map(_try_fits_parallel, fit_queue)
for state_or_tran in self.by_name.keys():
num_args = 0
if arg_support_enabled and self.by_name[state_or_tran]['isa'] == 'transition':
num_args = self._num_args[state_or_tran]
for model_attribute in self.by_name[state_or_tran]['attributes']:
fit_results = {}
for result in all_fit_results:
if result['key'][0] == state_or_tran and result['key'][1] == model_attribute:
fit_result = result['result']
if fit_result['best_rmsd'] >= min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is worse than ref ({:.0f}, {:.0f})'.format(
state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
fit_result['mean_rmsd'], fit_result['median_rmsd']))
elif fit_result['best_rmsd'] >= 0.5 * min(fit_result['mean_rmsd'], fit_result['median_rmsd']):
vprint(self.verbose, '[I] Not modeling {} {} as function of {}: best ({:.0f}) is not much better than ({:.0f}, {:.0f})'.format(
state_or_tran, model_attribute, result['key'][2], fit_result['best_rmsd'],
fit_result['mean_rmsd'], fit_result['median_rmsd']))
else:
fit_results[result['key'][2]] = fit_result
if (state_or_tran, model_attribute) in self.function_override:
function_str = self.function_override[(state_or_tran, model_attribute)]
var_re = re.compile(r'regression_arg\(([0-9]*)\)')
var_count = max(map(int, var_re.findall(function_str))) + 1
x = AnalyticFunction(function_str,
var_count, self._parameter_names, num_args)
x.fit(self.by_param, state_or_tran, model_attribute)
if x.fit_success:
param_model[state_or_tran][model_attribute] = {
'fit_result': fit_results,
'function' : x
}
elif len(fit_results.keys()):
x = analytic.function_powerset(fit_results, self._parameter_names, num_args)
x.fit(self.by_param, state_or_tran, model_attribute)
if x.fit_success:
param_model[state_or_tran][model_attribute] = {
'fit_result': fit_results,
'function' : x
}
def model_getter(name, key, **kwargs):
if key in param_model[name]:
param_list = kwargs['param']
param_function = param_model[name][key]['function']
if param_function.is_predictable(param_list):
return param_function.eval(param_list)
return static_model[name][key]
def info_getter(name, key):
if key in param_model[name]:
return param_model[name][key]
return None
return model_getter, info_getter
def states(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'state', self.by_name.keys())))
def transitions(self):
return sorted(list(filter(lambda k: self.by_name[k]['isa'] == 'transition', self.by_name.keys())))
def parameters(self):
return self._parameter_names
def assess(self, model_function):
results = {}
for name, elem in sorted(self.by_name.items()):
results[name] = {}
for key in elem['attributes']:
predicted_data = np.array(list(map(lambda i: model_function(name, key, param=elem['param'][i]), range(len(elem[key])))))
measures = regression_measures(predicted_data, elem[key])
results[name][key] = measures
return results
class MIMOSA:
def __init__(self, voltage, shunt, verbose = True):
self.voltage = voltage
self.shunt = shunt
self.verbose = verbose
self.r1 = 984 # "1k"
self.r2 = 99013 # "100k"
def charge_to_current_nocal(self, charge):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charge * ua_step
def _load_tf(self, tf):
num_bytes = tf.getmember('/tmp/mimosa//mimosa_scale_1.tmp').size
charges = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int32)
triggers = np.ndarray(shape=(int(num_bytes / 4)), dtype=np.int8)
with tf.extractfile('/tmp/mimosa//mimosa_scale_1.tmp') as f:
content = f.read()
iterator = struct.iter_unpack('<I', content)
i = 0
for word in iterator:
charges[i] = (word[0] >> 4)
triggers[i] = (word[0] & 0x08) >> 3
i += 1
return charges, triggers
def load_data(self, raw_data):
with io.BytesIO(raw_data) as data_object:
with tarfile.open(fileobj = data_object) as tf:
return self._load_tf(tf)
def currents_nocal(self, charges):
ua_max = 1.836 / self.shunt * 1000000
ua_step = ua_max / 65535
return charges.astype(np.double) * ua_step
def trigger_edges(self, triggers):
trigidx = []
prevtrig = triggers[0]
# the device is reset for MIMOSA calibration in the first 10s and may
# send bogus interrupts -> bogus triggers
for i in range(1000000, triggers.shape[0]):
trig = triggers[i]
if trig != prevtrig:
# Due to MIMOSA's integrate-read-reset cycle, the trigger
# appears two points (20µs) before the corresponding data
trigidx.append(i+2)
prevtrig = trig
return trigidx
def calibration_edges(self, currents):
r1idx = 0
r2idx = 0
ua_r1 = self.voltage / self.r1 * 1000000
# first second may be bogus
for i in range(100000, len(currents)):
if r1idx == 0 and currents[i] > ua_r1 * 0.6:
r1idx = i
elif r1idx != 0 and r2idx == 0 and i > (r1idx + 180000) and currents[i] < ua_r1 * 0.4:
r2idx = i
# 2s disconnected, 2s r1, 2s r2 with r1 < r2 -> ua_r1 > ua_r2
# allow 5ms buffer in both directions to account for bouncing relais contacts
return r1idx - 180500, r1idx - 500, r1idx + 500, r2idx - 500, r2idx + 500, r2idx + 180500
def calibration_function(self, charges, cal_edges):
dis_start, dis_end, r1_start, r1_end, r2_start, r2_end = cal_edges
if dis_start < 0:
dis_start = 0
chg_r0 = charges[dis_start:dis_end]
chg_r1 = charges[r1_start:r1_end]
chg_r2 = charges[r2_start:r2_end]
cal_0_mean = np.mean(chg_r0)
cal_0_std = np.std(chg_r0)
cal_r1_mean = np.mean(chg_r1)
cal_r1_std = np.std(chg_r1)
cal_r2_mean = np.mean(chg_r2)
cal_r2_std = np.std(chg_r2)
ua_r1 = self.voltage / self.r1 * 1000000
ua_r2 = self.voltage / self.r2 * 1000000
if cal_r2_mean > cal_0_mean:
b_lower = (ua_r2 - 0) / (cal_r2_mean - cal_0_mean)
else:
vprint(self.verbose, '[W] 0 uA == %.f uA during calibration' % (ua_r2))
b_lower = 0
b_upper = (ua_r1 - ua_r2) / (cal_r1_mean - cal_r2_mean)
b_total = (ua_r1 - 0) / (cal_r1_mean - cal_0_mean)
a_lower = -b_lower * cal_0_mean
a_upper = -b_upper * cal_r2_mean
a_total = -b_total * cal_0_mean
if self.shunt == 680:
# R1 current is higher than shunt range -> only use R2 for calibration
def calfunc(charge):
if charge < cal_0_mean:
return 0
else:
return charge * b_lower + a_lower
else:
def calfunc(charge):
if charge < cal_0_mean:
return 0
if charge <= cal_r2_mean:
return charge * b_lower + a_lower
else:
return charge * b_upper + a_upper + ua_r2
caldata = {
'edges' : [x * 10 for x in cal_edges],
'offset': cal_0_mean,
'offset2' : cal_r2_mean,
'slope_low' : b_lower,
'slope_high' : b_upper,
'add_low' : a_lower,
'add_high' : a_upper,
'r0_err_uW' : np.mean(self.currents_nocal(chg_r0)) * self.voltage,
'r0_std_uW' : np.std(self.currents_nocal(chg_r0)) * self.voltage,
'r1_err_uW' : (np.mean(self.currents_nocal(chg_r1)) - ua_r1) * self.voltage,
'r1_std_uW' : np.std(self.currents_nocal(chg_r1)) * self.voltage,
'r2_err_uW' : (np.mean(self.currents_nocal(chg_r2)) - ua_r2) * self.voltage,
'r2_std_uW' : np.std(self.currents_nocal(chg_r2)) * self.voltage,
}
#print("if charge < %f : return 0" % cal_0_mean)
#print("if charge <= %f : return charge * %f + %f" % (cal_r2_mean, b_lower, a_lower))
#print("else : return charge * %f + %f + %f" % (b_upper, a_upper, ua_r2))
return calfunc, caldata
def calcgrad(self, currents, threshold):
grad = np.gradient(running_mean(currents * self.voltage, 10))
# len(grad) == len(currents) - 9
subst = []
lastgrad = 0
for i in range(len(grad)):
# minimum substate duration: 10ms
if np.abs(grad[i]) > threshold and i - lastgrad > 50:
# account for skew introduced by running_mean and current
# ramp slope (parasitic capacitors etc.)
subst.append(i+10)
lastgrad = i
if lastgrad != i:
subst.append(i+10)
return subst
# TODO konfigurierbare min/max threshold und len(gradidx) > X, binaere
# Sache nach noetiger threshold. postprocessing mit
# "zwei benachbarte substates haben sehr aehnliche werte / niedrige stddev" -> mergen
# ... min/max muessen nicht vorgegeben werden, sind ja bekannt (0 / np.max(grad))
# TODO bei substates / index foo den offset durch running_mean beachten
# TODO ggf. clustering der 'abs(grad) > threshold' und bestimmung interessanter
# uebergaenge dadurch?
def gradfoo(self, currents):
gradients = np.abs(np.gradient(running_mean(currents * self.voltage, 10)))
gradmin = np.min(gradients)
gradmax = np.max(gradients)
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
num_substates = 2
while len(gradidx) != num_substates:
if gradmax - gradmin < 0.1:
# We did our best
return threshold, gradidx
if len(gradidx) > num_substates:
gradmin = threshold
else:
gradmax = threshold
threshold = np.mean([gradmin, gradmax])
gradidx = self.calcgrad(currents, threshold)
return threshold, gradidx
def analyze_states(self, charges, trigidx, ua_func):
previdx = 0
is_state = True
iterdata = []
for idx in trigidx:
range_raw = charges[previdx:idx]
range_ua = ua_func(range_raw)
substates = {}
if previdx != 0 and idx - previdx > 200:
thr, subst = 0, [] #self.gradfoo(range_ua)
if len(subst):
statelist = []
prevsubidx = 0
for subidx in subst:
statelist.append({
'duration': (subidx - prevsubidx) * 10,
'uW_mean' : np.mean(range_ua[prevsubidx : subidx] * self.voltage),
'uW_std' : np.std(range_ua[prevsubidx : subidx] * self.voltage),
})
prevsubidx = subidx
substates = {
'threshold' : thr,
'states' : statelist,
}
isa = 'state'
if not is_state:
isa = 'transition'
data = {
'isa': isa,
'clip_rate' : np.mean(range_raw == 65535),
'raw_mean': np.mean(range_raw),
'raw_std' : np.std(range_raw),
'uW_mean' : np.mean(range_ua * self.voltage),
'uW_std' : np.std(range_ua * self.voltage),
'us' : (idx - previdx) * 10,
}
if 'states' in substates:
data['substates'] = substates
ssum = np.sum(list(map(lambda x : x['duration'], substates['states'])))
if ssum != data['us']:
vprint(self.verbose, "ERR: duration %d vs %d" % (data['us'], ssum))
if isa == 'transition':
# subtract average power of previous state
# (that is, the state from which this transition originates)
data['uW_mean_delta_prev'] = data['uW_mean'] - iterdata[-1]['uW_mean']
# placeholder to avoid extra cases in the analysis
data['uW_mean_delta_next'] = data['uW_mean']
data['timeout'] = iterdata[-1]['us']
elif len(iterdata) > 0:
# subtract average power of next state
# (the state into which this transition leads)
iterdata[-1]['uW_mean_delta_next'] = iterdata[-1]['uW_mean'] - data['uW_mean']
iterdata.append(data)
previdx = idx
is_state = not is_state
return iterdata
|