1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
|
"""
Utilities for analytic description of parameter-dependent model attributes.
This module provides classes and helper functions useful for least-squares
regression and general handling of model functions.
"""
from itertools import chain, combinations
import numpy as np
import re
from scipy import optimize
from utils import is_numeric, vprint
arg_support_enabled = True
def powerset(iterable):
"""
Calculate powerset of given items.
Returns an iterable containing one tuple for each powerset element.
Example: powerset([1, 2]) -> [(), (1), (2), (1, 2)]
"""
s = list(iterable)
return chain.from_iterable(combinations(s, r) for r in range(len(s)+1))
class ParamFunction:
"""
A one-dimensional model function, ready for least squares optimization and similar.
Supports validity checks (e.g. if it is undefined for x <= 0) and an
error measure.
"""
def __init__(self, param_function, validation_function, num_vars):
"""
Create function object suitable for regression analysis.
This documentation assumes that 1-dimensional functions
(-> single float as model input) are used. However, n-dimensional
functions (-> list of float as model input) are also supported.
arguments:
param_function -- regression function. Must have the signature
(reg_param, model_param) -> float.
reg_param is a list of regression variable values,
model_param is the model input value (float).
Example: lambda rp, mp: rp[0] + rp[1] * mp
validation_function -- function used to check whether param_function
is defined for a given model_param. Signature:
model_param -> bool
Example: lambda mp: mp > 0
num_vars -- How many regression variables are used by this function,
i.e., the length of param_function's reg_param argument.
"""
self._param_function = param_function
self._validation_function = validation_function
self._num_variables = num_vars
def is_valid(self, arg):
"""
Check whether the regression function is defined for the given argument.
Returns bool.
"""
return self._validation_function(arg)
def eval(self, param, args):
"""
Evaluate regression function.
arguments:
param -- regression variable values (list of float)
arg -- model input (float)
"""
return self._param_function(param, args)
def error_function(self, P, X, y):
"""
Calculate model error.
arguments:
P -- optimized regression variables (list of float)
X -- model input (float)
y -- expected output from ground truth (float)
Returns deviation between model and ground truth (float).
"""
return self._param_function(P, X) - y
class AnalyticFunction:
"""
A multi-dimensional model function, generated from a string, which can be optimized using regression.
The function describes a single model attribute (e.g. TX duration or send(...) energy)
and how it is influenced by model parameters such as configured bit rate or
packet length.
"""
def __init__(self, function_str, parameters, num_args, verbose = True, regression_args = None):
"""
Create a new AnalyticFunction object from a function string.
arguments:
function_str -- the function.
Refer to regression variables using regression_arg(123),
to parameters using parameter(name),
and to function arguments (if any) using function_arg(123).
Example: "regression_arg(0) + regression_arg(1) * parameter(txbytes)"
parameters -- list containing the names of all model parameters,
including those not used in function_str, sorted lexically.
Sorting is mandatory, as parameter indexes (and not names) are used internally.
num_args -- number of local function arguments, if any. Set to 0 if
the model attribute does not belong to a function or if function
arguments are not included in the model.
verbose -- complain about odd events
regression_args -- Initial regression variable values,
both for function usage and least squares optimization.
If unset, defaults to [1, 1, 1, ...]
"""
self._parameter_names = parameters
self._num_args = num_args
self._model_str = function_str
rawfunction = function_str
self._dependson = [False] * (len(parameters) + num_args)
self.fit_success = False
self.verbose = verbose
if type(function_str) == str:
num_vars_re = re.compile(r'regression_arg\(([0-9]+)\)')
num_vars = max(map(int, num_vars_re.findall(function_str))) + 1
for i in range(len(parameters)):
if rawfunction.find('parameter({})'.format(parameters[i])) >= 0:
self._dependson[i] = True
rawfunction = rawfunction.replace('parameter({})'.format(parameters[i]), 'model_param[{:d}]'.format(i))
for i in range(0, num_args):
if rawfunction.find('function_arg({:d})'.format(i)) >= 0:
self._dependson[len(parameters) + i] = True
rawfunction = rawfunction.replace('function_arg({:d})'.format(i), 'model_param[{:d}]'.format(len(parameters) + i))
for i in range(num_vars):
rawfunction = rawfunction.replace('regression_arg({:d})'.format(i), 'reg_param[{:d}]'.format(i))
self._function_str = rawfunction
self._function = eval('lambda reg_param, model_param: ' + rawfunction)
else:
self._function_str = 'raise ValueError'
self._function = function_str
if regression_args:
self._regression_args = regression_args.copy()
self._fit_success = True
elif type(function_str) == str:
self._regression_args = list(np.ones((num_vars)))
else:
self._regression_args = []
def get_fit_data(self, by_param, state_or_tran, model_attribute):
"""
Return training data suitable for scipy.optimize.least_squares.
arguments:
by_param -- measurement data, partitioned by state/transition name and parameter/arg values.
This function only uses by_param[(state_or_tran, *)][model_attribute],
which must be a list or 1-D NumPy array containing the ground truth.
The parameter values in (state_or_tran, *) must be numeric for
all parameters this function depends on -- otherwise, the
corresponding data will be left out. Parameter values must be
ordered according to the order of parameter names used in
the ParamFunction constructor. Argument values (if any) always come after
parameters, in the order of their index in the function signature.
state_or_tran -- state or transition name, e.g. "TX" or "send"
model_attribute -- model attribute name, e.g. "power" or "duration"
returns (X, Y, num_valid, num_total):
X -- 2-D NumPy array of parameter combinations (model input).
First dimension is the parameter/argument index, the second
dimension contains its values.
Example: X[0] contains the first parameter's values.
Y -- 1-D NumPy array of training data (desired model output).
num_valid -- amount of distinct parameter values suitable for optimization
num_total -- total amount of distinct parameter values
"""
dimension = len(self._parameter_names) + self._num_args
X = [[] for i in range(dimension)]
Y = []
num_valid = 0
num_total = 0
for key, val in by_param.items():
if key[0] == state_or_tran and len(key[1]) == dimension:
valid = True
num_total += 1
for i in range(dimension):
if self._dependson[i] and not is_numeric(key[1][i]):
valid = False
if valid:
num_valid += 1
Y.extend(val[model_attribute])
for i in range(dimension):
if self._dependson[i]:
X[i].extend([float(key[1][i])] * len(val[model_attribute]))
else:
X[i].extend([np.nan] * len(val[model_attribute]))
elif key[0] == state_or_tran and len(key[1]) != dimension:
vprint(self.verbose, '[W] Invalid parameter key length while gathering fit data for {}/{}. is {}, want {}.'.format(state_or_tran, model_attribute, len(key[1]), dimension))
X = np.array(X)
Y = np.array(Y)
return X, Y, num_valid, num_total
def fit(self, by_param, state_or_tran, model_attribute):
"""
Fit the function on measurements via least squares regression.
arguments:
by_param -- measurement data, partitioned by state/transition name and parameter/arg values
state_or_tran -- state or transition name, e.g. "TX" or "send"
model_attribute -- model attribute name, e.g. "power" or "duration"
The ground truth is read from by_param[(state_or_tran, *)][model_attribute],
which must be a list or 1-D NumPy array. Parameter values must be
ordered according to the parameter names in the constructor. If
argument values are present, they must come after parameter values
in the order of their appearance in the function signature.
"""
X, Y, num_valid, num_total = self.get_fit_data(by_param, state_or_tran, model_attribute)
if num_valid > 2:
error_function = lambda P, X, y: self._function(P, X) - y
try:
res = optimize.least_squares(error_function, self._regression_args, args=(X, Y), xtol=2e-15)
except ValueError as err:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, err, self._model_str))
return
if res.status > 0:
self._regression_args = res.x
self.fit_success = True
else:
vprint(self.verbose, '[W] Fit failed for {}/{}: {} (function: {})'.format(state_or_tran, model_attribute, res.message, self._model_str))
else:
vprint(self.verbose, '[W] Insufficient amount of valid parameter keys, cannot fit {}/{}'.format(state_or_tran, model_attribute))
def is_predictable(self, param_list):
"""
Return whether the model function can be evaluated on the given parameter values.
The first value corresponds to the lexically first model parameter, etc.
All parameters must be set, not just the ones this function depends on.
Returns False iff a parameter the function depends on is not numeric
(e.g. None).
"""
for i, param in enumerate(param_list):
if self._dependson[i] and not is_numeric(param):
return False
return True
def eval(self, param_list, arg_list = []):
"""
Evaluate model function with specified param/arg values.
arguments:
param_list -- parameter values (list of float). First item
corresponds to lexically first parameter, etc.
arg_list -- argument values (list of float), if arguments are used.
"""
if len(self._regression_args) == 0:
return self._function(param_list, arg_list)
return self._function(self._regression_args, param_list)
class analytic:
"""
Utilities for analytic description of parameter-dependent model attributes and regression analysis.
provided functions:
functions -- retrieve pre-defined set of regression function candidates
function_powerset -- combine several per-parameter functions into a single AnalyticFunction
"""
_num0_8 = np.vectorize(lambda x: 8 - bin(int(x)).count("1"))
_num0_16 = np.vectorize(lambda x: 16 - bin(int(x)).count("1"))
_num1 = np.vectorize(lambda x: bin(int(x)).count("1"))
_safe_log = np.vectorize(lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.)
_safe_inv = np.vectorize(lambda x: 1 / x if np.abs(x) > 0.001 else 1.)
_safe_sqrt = np.vectorize(lambda x: np.sqrt(np.abs(x)))
_function_map = {
'linear' : lambda x: x,
'logarithmic' : np.log,
'logarithmic1' : lambda x: np.log(x + 1),
'exponential' : np.exp,
'square' : lambda x : x ** 2,
'inverse' : lambda x : 1 / x,
'sqrt' : lambda x: np.sqrt(np.abs(x)),
'num0_8' : _num0_8,
'num0_16' : _num0_16,
'num1' : _num1,
'safe_log' : lambda x: np.log(np.abs(x)) if np.abs(x) > 0.001 else 1.,
'safe_inv' : lambda x: 1 / x if np.abs(x) > 0.001 else 1.,
'safe_sqrt': lambda x: np.sqrt(np.abs(x)),
}
def functions(safe_functions_enabled = False):
"""
Retrieve pre-defined set of regression function candidates.
Returns a dict of functions which are typical for energy/timing
behaviour of embedded hardware, e.g. linear, exponential or inverse
dependency on a configuration setting/runtime variable.
arguments:
safe_functions_enabled -- Include "safe" variants of functions with
limited argument range, e.g. a safe
inverse which returns 1 when dividing by 0.
Each function is a ParamFunction object. In most cases, two regression
variables are expected.
"""
functions = {
'linear' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param,
lambda model_param: True,
2
),
'logarithmic' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param),
lambda model_param: model_param > 0,
2
),
'logarithmic1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.log(model_param + 1),
lambda model_param: model_param > -1,
2
),
'exponential' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.exp(model_param),
lambda model_param: model_param <= 64,
2
),
#'polynomial' : lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param + reg_param[2] * model_param ** 2,
'square' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * model_param ** 2,
lambda model_param: True,
2
),
'inverse' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] / model_param,
lambda model_param: model_param != 0,
2
),
'sqrt' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * np.sqrt(model_param),
lambda model_param: model_param >= 0,
2
),
'num0_8' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_8(model_param),
lambda model_param: True,
2
),
'num0_16' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num0_16(model_param),
lambda model_param: True,
2
),
'num1' : ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._num1(model_param),
lambda model_param: True,
2
),
}
if safe_functions_enabled:
functions['safe_log'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_log(model_param),
lambda model_param: True,
2
)
functions['safe_inv'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_inv(model_param),
lambda model_param: True,
2
)
functions['safe_sqrt'] = ParamFunction(
lambda reg_param, model_param: reg_param[0] + reg_param[1] * analytic._safe_sqrt(model_param),
lambda model_param: True,
2
)
return functions
def _fmap(reference_type, reference_name, function_type):
"""Map arg/parameter name and best-fit function name to function text suitable for AnalyticFunction."""
ref_str = '{}({})'.format(reference_type,reference_name)
if function_type == 'linear':
return ref_str
if function_type == 'logarithmic':
return 'np.log({})'.format(ref_str)
if function_type == 'logarithmic1':
return 'np.log({} + 1)'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'exponential':
return 'np.exp({})'.format(ref_str)
if function_type == 'square':
return '({})**2'.format(ref_str)
if function_type == 'inverse':
return '1/({})'.format(ref_str)
if function_type == 'sqrt':
return 'np.sqrt({})'.format(ref_str)
return 'analytic._{}({})'.format(function_type, ref_str)
def function_powerset(fit_results, parameter_names, num_args = 0):
"""
Combine per-parameter regression results into a single multi-dimensional function.
arguments:
fit_results -- results dict. One element per parameter, each containing
a dict of the form {'best' : name of function with best fit}.
Must not include parameters which do not influence the model attribute.
Example: {'txpower' : {'best': 'exponential'}}
parameter_names -- Parameter names, including those left
out in fit_results because they do not influence the model attribute.
Must be sorted lexically.
Example: ['bitrate', 'txpower']
num_args -- number of local function arguments, if any. Set to 0 if
the model attribute does not belong to a function or if function
arguments are not included in the model.
Returns an AnalyticFunction instantce corresponding to the combined
function.
"""
buf = '0'
arg_idx = 0
for combination in powerset(fit_results.items()):
buf += ' + regression_arg({:d})'.format(arg_idx)
arg_idx += 1
for function_item in combination:
if arg_support_enabled and is_numeric(function_item[0]):
buf += ' * {}'.format(analytic._fmap('function_arg', function_item[0], function_item[1]['best']))
else:
buf += ' * {}'.format(analytic._fmap('parameter', function_item[0], function_item[1]['best']))
return AnalyticFunction(buf, parameter_names, num_args)
|